
Spring 2020 CIS 262

Automata, Computability and Complexity

Jean Gallier

Homework 8

April 07, 2020; Due April 16, 2020, beginning of class

“B problems” must be turned in.

Problem B1 (40 pts). The Fibonnaci sequence, un, is given by

u0 = 1

u1 = 1

un+2 = un+1 + un, n ≥ 0.

So, the Fibonnaci sequence begins with

1, 1, 2, 3, 5, 8, 13, 21, 34, · · ·

(a) Prove that

un ≥

(√
5 + 1

2

)n−1

, n ≥ 1.

(b) Prove that the language over {a} given by

L = {aun | n ≥ 0}

is not regular.

Hint . Use (a) and the Myhill-Nerode Theorem.

Problem B2 (120 pts). Which of the following languages are regular? Justify each answer.

(1) L1 = {wcw | w ∈ {a, b}∗}. (here Σ = {a, b, c}).
(2) L2 = {xy | x, y ∈ {a, b}∗ and |x| = |y|}. (here Σ = {a, b})
(3) L3 = {an | n is a prime number}. (here Σ = {a}).
(4) L4 = {ambn | gcd(m,n) = 23}. (here Σ = {a, b}).
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(5) Consider the language

L5 = {a4n+3 | 4n+ 3 is prime}.

Assuming that L5 is infinite, prove that L5 is not regular.

(6) Let Fn = 22n + 1, for any integer n ≥ 0, and let

L6 = {aFn | n ≥ 0}.

Here Σ = {a}.

Extra Credit (from 10 up to 10100 pts). Find explicitly what F0, F1, F2, F3 are, and
check that they are prime. What about F4?

Is the language
L7 = {aFn | n ≥ 0, Fn is prime}

regular?

Extra Credit (20 pts). Prove that there are infinitely many primes of the form 4n+ 3.

The list of such primes begins with

3, 7, 11, 19, 23, 31, 43, · · ·

Say we already have n+ 1 of these primes, denoted by

3, p1, p2, · · · , pn,

where pi > 3. Consider the number

m = 4p1p2 · · · pn + 3.

If m = q1 · · · qk is a prime factorization of m, prove that qj > 3 for j = 1, . . . k and that
no qj is equal to any of the pi’s. Prove that one of the qj’s must be of the form 4s+ 3, which
shows that there is a prime of the form 4s+ 3 greater than any of the previous primes of the
same form.

Problem B3 (80 pts). The purpose of this problem is to get a fast algorithm for testing
state equivalence in a DFA. Let D = (Q,Σ, δ, q0, F ) be a deterministic finite automaton.
Recall that state equivalence is the equivalence relation ≡ on Q, defined such that,

p ≡ q iff ∀z ∈ Σ∗(δ∗(p, z) ∈ F iff δ∗(q, z) ∈ F ),

and that i-equivalence is the equivalence relation ≡i on Q, defined such that,

p ≡i q iff ∀z ∈ Σ∗, |z| ≤ i (δ∗(p, z) ∈ F iff δ∗(q, z) ∈ F ).
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A relation S ⊆ Q×Q is a forward closure iff it is an equivalence relation and whenever
(p, q) ∈ S, then (δ(p, a), δ(q, a)) ∈ S, for all a ∈ Σ.

We say that a forward closure S is good iff whenever (p, q) ∈ S, then good(p, q), where
good(p, q) holds iff either both p, q ∈ F , or both p, q /∈ F .

Given any relation R ⊆ Q×Q, recall that the smallest equivalence relation R≈ containing
R is the relation (R∪R−1)∗ (where R−1 = {(q, p) | (p, q) ∈ R}, and (R∪R−1)∗ is the reflexive
and transitive closure of (R ∪ R−1)). We define the sequence of relations Ri ⊆ Q × Q as
follows:

R0 = R≈

Ri+1 = (Ri ∪ {(δ(p, a), δ(q, a)) | (p, q) ∈ Ri, a ∈ Σ})≈.

(1) Prove that Ri0+1 = Ri0 for some least i0. Prove that Ri0 is the smallest forward
closure containing R.

Hint . First, prove that
Ri ⊆ Ri+1

for all i ≥ 0, Next, prove that Ri0 is forward closed.

If ∼ is any forward closure containing R, prove by induction that

Ri ⊆∼

for all i ≥ 0.

We denote the smallest forward closure Ri0 containing R as R†, and call it the forward
closure of R.

(2) Prove that p ≡ q iff the forward closure R† of the relation R = {(p, q)} is good.

Hint . First, prove that if R† is good, then

R† ⊆≡ .

For this, prove by induction that
R† ⊆≡i

for all i ≥ 0.

Then, prove that if p ≡ q, then
R† ⊆≡ .

For this, prove that ≡ is an equivalence relation containing R = {(p, q)} and that ≡ is
forward closed.

TOTAL: 240 + 30+ points
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