Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier Homework 8

April 07, 2020; Due April 16, 2020, beginning of class

"B problems" must be turned in.
Problem B1 (40 pts). The Fibonnaci sequence, u_{n}, is given by

$$
\begin{aligned}
u_{0} & =1 \\
u_{1} & =1 \\
u_{n+2} & =u_{n+1}+u_{n}, \quad n \geq 0 .
\end{aligned}
$$

So, the Fibonnaci sequence begins with

$$
1,1,2,3,5,8,13,21,34, \cdots
$$

(a) Prove that

$$
u_{n} \geq\left(\frac{\sqrt{5}+1}{2}\right)^{n-1}, \quad n \geq 1
$$

(b) Prove that the language over $\{a\}$ given by

$$
L=\left\{a^{u_{n}} \mid n \geq 0\right\}
$$

is not regular.
Hint. Use (a) and the Myhill-Nerode Theorem.
Problem B2 (120 pts). Which of the following languages are regular? Justify each answer.
(1) $L_{1}=\left\{w c w \mid w \in\{a, b\}^{*}\right\}$. (here $\Sigma=\{a, b, c\}$).
(2) $L_{2}=\left\{x y \mid x, y \in\{a, b\}^{*}\right.$ and $\left.|x|=|y|\right\}$. (here $\Sigma=\{a, b\}$)
(3) $L_{3}=\left\{a^{n} \mid n\right.$ is a prime number $\}$. (here $\Sigma=\{a\}$).
(4) $L_{4}=\left\{a^{m} b^{n} \mid \operatorname{gcd}(m, n)=23\right\}$. (here $\Sigma=\{a, b\}$).
(5) Consider the language

$$
L_{5}=\left\{a^{4 n+3} \mid 4 n+3 \text { is prime }\right\} .
$$

Assuming that L_{5} is infinite, prove that L_{5} is not regular.
(6) Let $F_{n}=2^{2^{n}}+1$, for any integer $n \geq 0$, and let

$$
L_{6}=\left\{a^{F_{n}} \mid n \geq 0\right\} .
$$

Here $\Sigma=\{a\}$.
Extra Credit (from 10 up to $10^{100} \mathbf{p t s}$). Find explicitly what $F_{0}, F_{1}, F_{2}, F_{3}$ are, and check that they are prime. What about F_{4} ?

Is the language

$$
L_{7}=\left\{a^{F_{n}} \mid n \geq 0, F_{n} \text { is prime }\right\}
$$

regular?
Extra Credit ($\mathbf{2 0} \mathbf{p t s}$). Prove that there are infinitely many primes of the form $4 n+3$.
The list of such primes begins with

$$
3,7,11,19,23,31,43, \cdots
$$

Say we already have $n+1$ of these primes, denoted by

$$
3, p_{1}, p_{2}, \cdots, p_{n}
$$

where $p_{i}>3$. Consider the number

$$
m=4 p_{1} p_{2} \cdots p_{n}+3
$$

If $m=q_{1} \cdots q_{k}$ is a prime factorization of m, prove that $q_{j}>3$ for $j=1, \ldots k$ and that no q_{j} is equal to any of the p_{i} 's. Prove that one of the q_{j} 's must be of the form $4 s+3$, which shows that there is a prime of the form $4 s+3$ greater than any of the previous primes of the same form.

Problem B3 (80 pts). The purpose of this problem is to get a fast algorithm for testing state equivalence in a DFA. Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a deterministic finite automaton. Recall that state equivalence is the equivalence relation \equiv on Q, defined such that,

$$
p \equiv q \quad \text { iff } \quad \forall z \in \Sigma^{*}\left(\delta^{*}(p, z) \in F \quad \text { iff } \quad \delta^{*}(q, z) \in F\right),
$$

and that i-equivalence is the equivalence relation \equiv_{i} on Q, defined such that,

$$
p \equiv_{i} q \quad \text { iff } \quad \forall z \in \Sigma^{*},|z| \leq i\left(\delta^{*}(p, z) \in F \quad \text { iff } \quad \delta^{*}(q, z) \in F\right)
$$

A relation $S \subseteq Q \times Q$ is a forward closure iff it is an equivalence relation and whenever $(p, q) \in S$, then $(\delta(p, a), \delta(q, a)) \in S$, for all $a \in \Sigma$.

We say that a forward closure S is good iff whenever $(p, q) \in S$, then $\operatorname{good}(p, q)$, where $\operatorname{good}(p, q)$ holds iff either both $p, q \in F$, or both $p, q \notin F$.

Given any relation $R \subseteq Q \times Q$, recall that the smallest equivalence relation R_{\approx} containing R is the relation $\left(R \cup R^{-1}\right)^{*}$ (where $R^{-1}=\{(q, p) \mid(p, q) \in R\}$, and $\left(R \cup R^{-1}\right)^{*}$ is the reflexive and transitive closure of $\left(R \cup R^{-1}\right)$). We define the sequence of relations $R_{i} \subseteq Q \times Q$ as follows:

$$
\begin{aligned}
R_{0} & =R_{\approx} \\
R_{i+1} & =\left(R_{i} \cup\left\{(\delta(p, a), \delta(q, a)) \mid(p, q) \in R_{i}, a \in \Sigma\right\}\right) \approx .
\end{aligned}
$$

(1) Prove that $R_{i_{0}+1}=R_{i_{0}}$ for some least i_{0}. Prove that $R_{i_{0}}$ is the smallest forward closure containing R.
Hint. First, prove that

$$
R_{i} \subseteq R_{i+1}
$$

for all $i \geq 0$, Next, prove that $R_{i_{0}}$ is forward closed.
If \sim is any forward closure containing R, prove by induction that

$$
R_{i} \subseteq \sim
$$

for all $i \geq 0$.
We denote the smallest forward closure $R_{i_{0}}$ containing R as R^{\dagger}, and call it the forward closure of R.
(2) Prove that $p \equiv q$ iff the forward closure R^{\dagger} of the relation $R=\{(p, q)\}$ is good.

Hint. First, prove that if R^{\dagger} is good, then

$$
R^{\dagger} \subseteq \equiv
$$

For this, prove by induction that

$$
R^{\dagger} \subseteq \equiv_{i}
$$

for all $i \geq 0$.
Then, prove that if $p \equiv q$, then

$$
R^{\dagger} \subseteq \equiv
$$

For this, prove that \equiv is an equivalence relation containing $R=\{(p, q)\}$ and that \equiv is forward closed.

TOTAL: $240+30^{+}$points

