Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier

Homework 8

April 07, 2020; Due April 16, 2020, beginning of class

"B problems" must be turned in.

Problem B1 (40 pts). The *Fibonnaci sequence*, u_n , is given by

$$u_0 = 1$$

 $u_1 = 1$
 $u_{n+2} = u_{n+1} + u_n, \qquad n \ge 0.$

So, the Fibonnaci sequence begins with

$$1, 1, 2, 3, 5, 8, 13, 21, 34, \cdots$$

(a) Prove that

$$u_n \ge \left(\frac{\sqrt{5}+1}{2}\right)^{n-1}, \qquad n \ge 1.$$

(b) Prove that the language over
$$\{a\}$$
 given by

$$L = \{a^{u_n} \mid n \ge 0\}$$

is not regular.

Hint. Use (a) and the Myhill-Nerode Theorem.

Problem B2 (120 pts). Which of the following languages are regular? Justify each answer.

(1) $L_1 = \{wcw \mid w \in \{a, b\}^*\}$. (here $\Sigma = \{a, b, c\}$). (2) $L_2 = \{xy \mid x, y \in \{a, b\}^* \text{ and } |x| = |y|\}$. (here $\Sigma = \{a, b\}$) (3) $L_3 = \{a^n \mid n \text{ is a prime number}\}$. (here $\Sigma = \{a\}$). (4) $L_4 = \{a^m b^n \mid gcd(m, n) = 23\}$. (here $\Sigma = \{a, b\}$). (5) Consider the language

$$L_5 = \{a^{4n+3} \mid 4n+3 \text{ is prime}\}.$$

Assuming that L_5 is infinite, prove that L_5 is not regular.

(6) Let $F_n = 2^{2^n} + 1$, for any integer $n \ge 0$, and let

$$L_6 = \{ a^{F_n} \mid n \ge 0 \}$$

Here $\Sigma = \{a\}$.

Extra Credit (from 10 up to 10^{100} pts). Find explicitly what F_0, F_1, F_2, F_3 are, and check that they are prime. What about F_4 ?

Is the language

$$L_7 = \{a^{F_n} \mid n \ge 0, F_n \text{ is prime}\}$$

regular?

Extra Credit (20 pts). Prove that there are infinitely many primes of the form 4n + 3.

The list of such primes begins with

$$3, 7, 11, 19, 23, 31, 43, \cdots$$

Say we already have n + 1 of these primes, denoted by

$$3, p_1, p_2, \cdots, p_n,$$

where $p_i > 3$. Consider the number

$$m = 4p_1p_2\cdots p_n + 3.$$

If $m = q_1 \cdots q_k$ is a prime factorization of m, prove that $q_j > 3$ for $j = 1, \ldots k$ and that no q_j is equal to any of the p_i 's. Prove that one of the q_j 's must be of the form 4s + 3, which shows that there is a prime of the form 4s + 3 greater than any of the previous primes of the same form.

Problem B3 (80 pts). The purpose of this problem is to get a fast algorithm for testing state equivalence in a DFA. Let $D = (Q, \Sigma, \delta, q_0, F)$ be a deterministic finite automaton. Recall that *state equivalence* is the equivalence relation \equiv on Q, defined such that,

$$p \equiv q$$
 iff $\forall z \in \Sigma^*(\delta^*(p, z) \in F$ iff $\delta^*(q, z) \in F)$.

and that *i*-equivalence is the equivalence relation \equiv_i on Q, defined such that,

$$p \equiv_i q$$
 iff $\forall z \in \Sigma^*, |z| \le i \ (\delta^*(p, z) \in F)$ iff $\delta^*(q, z) \in F$)

A relation $S \subseteq Q \times Q$ is a *forward closure* iff it is an equivalence relation and whenever $(p,q) \in S$, then $(\delta(p,a), \delta(q,a)) \in S$, for all $a \in \Sigma$.

We say that a forward closure S is good iff whenever $(p,q) \in S$, then good(p,q), where good(p,q) holds iff either both $p,q \in F$, or both $p,q \notin F$.

Given any relation $R \subseteq Q \times Q$, recall that the smallest equivalence relation R_{\approx} containing R is the relation $(R \cup R^{-1})^*$ (where $R^{-1} = \{(q, p) \mid (p, q) \in R\}$, and $(R \cup R^{-1})^*$ is the reflexive and transitive closure of $(R \cup R^{-1})$). We define the sequence of relations $R_i \subseteq Q \times Q$ as follows:

$$R_0 = R_{\approx}$$

$$R_{i+1} = (R_i \cup \{ (\delta(p, a), \delta(q, a)) \mid (p, q) \in R_i, \ a \in \Sigma \})_{\approx}.$$

(1) Prove that $R_{i_0+1} = R_{i_0}$ for some least i_0 . Prove that R_{i_0} is the smallest forward closure containing R.

Hint. First, prove that

 $R_i \subseteq R_{i+1}$

for all $i \geq 0$, Next, prove that R_{i_0} is forward closed.

If \sim is any forward closure containing R, prove by induction that

 $R_i \subseteq \sim$

for all $i \ge 0$.

We denote the smallest forward closure R_{i_0} containing R as R^{\dagger} , and call it the *forward* closure of R.

(2) Prove that $p \equiv q$ iff the forward closure R^{\dagger} of the relation $R = \{(p,q)\}$ is good. *Hint*. First, prove that if R^{\dagger} is good, then

$$R^{\dagger} \subseteq \equiv A$$

For this, prove by induction that

$$R^{\dagger} \subseteq \equiv_i$$

for all $i \ge 0$.

Then, prove that if $p \equiv q$, then

$$R^{\dagger} \subseteq \equiv A$$

For this, prove that \equiv is an equivalence relation containing $R = \{(p,q)\}$ and that \equiv is forward closed.

TOTAL: $240 + 30^+$ points