
Spring 2020 CIS 262

Automata, Computability and Complexity

Jean Gallier

Homework 9

April 16, 2020; Due April 29, 2020, beginning of class

Problem B1 (40 pts). Give a context-free grammar for the language over the alphabet
{a, b, c} given by

L = {xcy | x 6= y, x, y ∈ {a, b}∗}.

Hint . At first glance, this seems impossible. Think nondeterministically. You need to figure
out how to express that x 6= y in such a way that you can write grammar rules that enforce
this condition. Obviously, this is the case if |x| < |y| or |y| < |x|. Another possibility is that
x and y differ by some symbol in the same position (scanning from left ro right).

If you do it “right,” you choice of productions should yield a justification of the correctness
of your grammar.

Problem B2 (10 pts). Prove that the extended pairing function 〈x1, . . . , xn〉n defined in
the notes (see Section 2.1 of the notes, page 44) satisfies the equation

〈x1, . . . , xn, xn+1〉n+1 = 〈x1, 〈x2, . . . , xn+1〉n〉.

Compute 〈2, 5, 7, 17〉4 (this integer has 10 digits).

Problem B3 (30 pts). Prove that the function, f : Σ∗ → Σ∗, given by

f(w) = www

is RAM computable by constructing a RAM program (Σ = {a, b}).

Problem B4 (30 pts). Give context-free grammars for the following languages:

(a) L5 = {wcwR | w ∈ {a, b}∗} (wR denotes the reversal of w)

(b) L6 = {ambn | 1 ≤ m ≤ n ≤ 2m}
(c) L8 = {xcy | |x| = 2|y|, x, y ∈ {a, b}∗}
In each case, give a (very) brief justification of the fact that your grammar generates the

desired language.
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Problem B5 (60 pts). Given a context-free language L and a regular language R, prove
that L ∩R is context-free.

Do not use PDA’s to solve this problem!

Use the following method. Without loss of generality, assume that L = L(G), where G =
(V,Σ, P, S) is in Chomsky normal form, and letR = L(D), for some DFAD = (Q,Σ, δ, q0, F ).
Use a kind of cross-product construction as described below. Construct a CFG G2 whose set
of nonterminals is Q×N×Q ∪{S0}, where S0 is a new nonterminal, and whose productions
are of the form:

S0 → (q0, S, f),

for every f ∈ F ;
(p,A, δ(p, a))→ a iff (A→ a) ∈ P,

for all a ∈ Σ, all A ∈ N , and all p ∈ Q;

(p,A, s)→ (p,B, q)(q, C, s) iff (A→ BC) ∈ P,

for all p, q, s ∈ Q and all A,B,C ∈ N ;

S0 → ε iff (S → ε) ∈ P and q0 ∈ F.

Prove that for all p, q ∈ Q, all A ∈ N , all w ∈ Σ+, and all n ≥ 1,

(p,A, q)
n

=⇒
lm G2

w iff A
n

=⇒
lm G

w and δ∗(p, w) = q.

Conclude that L(G2) = L ∩R.

Problem B6 (50 pts). Given an undirected graph G = (V,E) and a set C = {c1, . . . , cp}
of p colors, a coloring of G is an assignment of a color from C to each node in V such
that no two adjacent nodes share the same color, or more precisely such that for evey edge
{u, v} ∈ E, the nodes u and v are assigned different colors. A k-coloring of a graph G is
a coloring using at most k-distinct colors. For example, the graph shown in Figure 1 has a
3-coloring (using green, blue, red).

The graph coloring problem is to decide whether a graph G is k-colorable for a given
integer k ≥ 1.

(1) Give a polynomial reduction from the graph 3-coloring problem to the
3-satisfiability problem for propositions in CNF.

If |V | = n, create n × 3 propositional variables xij with the intended meaning that xij
is true iff node vi is colored with color j. You need to write sets of clauses to assert the
following facts:

1. Every node is colored.
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Figure 1: Petersen graph.

2. No two distinct colors are assigned to the same node.

3. For every edge {vi, vj}, nodes vi and vj cannot be assigned the same color.

Beware that it is possible to assert that every node is assigned one and only one color
using a proposition in disjunctive normal form, but this is not a correct answer; we want a
proposition in conjunctive normal form.

(2) Prove that 2-coloring can be solved deterministically in polynomial time.

Remark: It is known that a graph has a 2-coloring iff it is bipartite, but do not use this
fact to solve B3(2). Only use material covered in the notes for CIS262.

The problem of 3-coloring is actually NP-complete, but this is a bit tricky to prove.

Problem B7 (60 pts). Let A be any p×q matrix with integer coefficients and let b ∈ Zp be
any vector with integer coefficients. The 0-1 integer programming problem is to find whether
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a system of p linear equations in q variables

a11x1 + · · ·+ a1qxq = b1
...

...

ai1x1 + · · ·+ aiqxq = bi
...

...

ap1x1 + · · ·+ apqxq = bp

with aij, bi ∈ Z has any solution x ∈ {0, 1}q, that is, with xi ∈ {0, 1}. In matrix form, if we
let

A =

a11 · · · a1q
...

. . .
...

ap1 · · · apq

 , b =

b1...
bp

 , x =

x1...
xq

 ,

then we write the above system as
Ax = b.

(i) Prove that the 0-1 integer programming problem is in NP .

(ii) Prove that the restricted 0-1 integer programming problem in which the coefficients of
A are 0 or 1 and all entries in b are equal to 1 isNP-complete by providing a polynomial-time
reduction from the bounded-tiling problem. Do not try to reduce any other problem
to the 0-1 integer programming problem.

Hint . Given a tiling problem, ((T , V,H), ŝ, σ0), create a 0-1-valued variable, xmnt, such that
xmnt = 1 iff tile t occurs in position (m,n) in some tiling. Write equations or inequalities
expressing that a tiling exists and then use “slack variables” to convert inequalities to equa-
tions. For example, to express the fact that every position is tiled by a single tile, use the
equation ∑

t∈T

xmnt = 1,

for all m,n with 1 ≤ m ≤ 2s and 1 ≤ n ≤ s. Also, if you have an inequality such as

2x1 + 3x2 − x3 ≤ 5 (∗)

with x1, x2, x3 ∈ Z, then using a new variable y1 taking its values in N, that is, nonnegative
values, we obtain the equation

2x1 + 3x2 − x3 + y1 = 5, (∗∗)

and the inequality (∗) has solutions with x1, x2, x3 ∈ Z iff the equation (∗∗) has a solution
with x1, x2, x3 ∈ Z and y1 ∈ N. The variable y1 is called a slack variable (this terminology
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comes from optimization theory, more specifically, linear programming). For the 0-1-integer
programming problem, all variables, including the slack variables, take values in {0, 1}.

Conclude that the 0-1 integer programming problem is NP-complete.

TOTAL: 280 points.
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