Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier Homework 9

April 16, 2020; Due April 29, 2020, beginning of class

Problem B1 (40 pts). Give a context-free grammar for the language over the alphabet $\{a, b, c\}$ given by

$$
L=\left\{x c y \mid x \neq y, x, y \in\{a, b\}^{*}\right\} .
$$

Hint. At first glance, this seems impossible. Think nondeterministically. You need to figure out how to express that $x \neq y$ in such a way that you can write grammar rules that enforce this condition. Obviously, this is the case if $|x|<|y|$ or $|y|<|x|$. Another possibility is that x and y differ by some symbol in the same position (scanning from left ro right).

If you do it "right," you choice of productions should yield a justification of the correctness of your grammar.

Problem B2 (10 pts). Prove that the extended pairing function $\left\langle x_{1}, \ldots, x_{n}\right\rangle_{n}$ defined in the notes (see Section 2.1 of the notes, page 44) satisfies the equation

$$
\left\langle x_{1}, \ldots, x_{n}, x_{n+1}\right\rangle_{n+1}=\left\langle x_{1},\left\langle x_{2}, \ldots, x_{n+1}\right\rangle_{n}\right\rangle .
$$

Compute $\langle 2,5,7,17\rangle_{4}$ (this integer has 10 digits).
Problem B3 (30 pts). Prove that the function, $f: \Sigma^{*} \rightarrow \Sigma^{*}$, given by

$$
f(w)=w w w
$$

is RAM computable by constructing a RAM program $(\Sigma=\{a, b\})$.
Problem B4 (30 pts). Give context-free grammars for the following languages:
(a) $L_{5}=\left\{w c w^{R} \mid w \in\{a, b\}^{*}\right\}\left(w^{R}\right.$ denotes the reversal of $\left.w\right)$
(b) $L_{6}=\left\{a^{m} b^{n} \mid 1 \leq m \leq n \leq 2 m\right\}$
(c) $L_{8}=\left\{x c y| | x|=2| y \mid, x, y \in\{a, b\}^{*}\right\}$

In each case, give a (very) brief justification of the fact that your grammar generates the desired language.

Problem B5 (60 pts). Given a context-free language L and a regular language R, prove that $L \cap R$ is context-free.

Do not use PDA's to solve this problem!
Use the following method. Without loss of generality, assume that $L=L(G)$, where $G=$ (V, Σ, P, S) is in Chomsky normal form, and let $R=L(D)$, for some DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$. Use a kind of cross-product construction as described below. Construct a CFG G_{2} whose set of nonterminals is $Q \times N \times Q \cup\left\{S_{0}\right\}$, where S_{0} is a new nonterminal, and whose productions are of the form:

$$
S_{0} \rightarrow\left(q_{0}, S, f\right),
$$

for every $f \in F$;

$$
(p, A, \delta(p, a)) \rightarrow a \quad \text { iff } \quad(A \rightarrow a) \in P
$$

for all $a \in \Sigma$, all $A \in N$, and all $p \in Q$;

$$
(p, A, s) \rightarrow(p, B, q)(q, C, s) \quad \text { iff } \quad(A \rightarrow B C) \in P
$$

for all $p, q, s \in Q$ and all $A, B, C \in N$;

$$
S_{0} \rightarrow \epsilon \quad \text { iff } \quad(S \rightarrow \epsilon) \in P \text { and } q_{0} \in F
$$

Prove that for all $p, q \in Q$, all $A \in N$, all $w \in \Sigma^{+}$, and all $n \geq 1$,

$$
(p, A, q) \underset{l m}{n} G_{G_{2}} w \quad \text { iff } A \xlongequal[l m]{n} w \quad \text { and } \quad \delta^{*}(p, w)=q .
$$

Conclude that $L\left(G_{2}\right)=L \cap R$.
Problem B6 (50 pts). Given an undirected graph $G=(V, E)$ and a set $C=\left\{c_{1}, \ldots, c_{p}\right\}$ of p colors, a coloring of G is an assignment of a color from C to each node in V such that no two adjacent nodes share the same color, or more precisely such that for evey edge $\{u, v\} \in E$, the nodes u and v are assigned different colors. A k-coloring of a graph G is a coloring using at most k-distinct colors. For example, the graph shown in Figure 1 has a 3 -coloring (using green, blue, red).

The graph coloring problem is to decide whether a graph G is k-colorable for a given integer $k \geq 1$.
(1) Give a polynomial reduction from the graph 3-coloring problem to the 3-satisfiability problem for propositions in CNF.

If $|V|=n$, create $n \times 3$ propositional variables $x_{i j}$ with the intended meaning that $x_{i j}$ is true iff node v_{i} is colored with color j. You need to write sets of clauses to assert the following facts:

1. Every node is colored.

Figure 1: Petersen graph.
2. No two distinct colors are assigned to the same node.
3. For every edge $\left\{v_{i}, v_{j}\right\}$, nodes v_{i} and v_{j} cannot be assigned the same color.

Beware that it is possible to assert that every node is assigned one and only one color using a proposition in disjunctive normal form, but this is not a correct answer; we want a proposition in conjunctive normal form.
(2) Prove that 2-coloring can be solved deterministically in polynomial time.

Remark: It is known that a graph has a 2-coloring iff it is bipartite, but do not use this fact to solve B3(2). Only use material covered in the notes for CIS262.

The problem of 3 -coloring is actually $\mathcal{N} \mathcal{P}$-complete, but this is a bit tricky to prove.

Problem B7 (60 pts). Let A be any $p \times q$ matrix with integer coefficients and let $b \in \mathbb{Z}^{p}$ be any vector with integer coefficients. The 0-1 integer programming problem is to find whether
a system of p linear equations in q variables

$$
\begin{array}{cc}
a_{11} x_{1}+\cdots+a_{1 q} x_{q}= & b_{1} \\
\vdots & \vdots \\
a_{i 1} x_{1}+\cdots+a_{i q} x_{q}= & b_{i} \\
\vdots & \vdots \\
a_{p 1} x_{1}+\cdots+a_{p q} x_{q}= & b_{p}
\end{array}
$$

with $a_{i j}, b_{i} \in \mathbb{Z}$ has any solution $x \in\{0,1\}^{q}$, that is, with $x_{i} \in\{0,1\}$. In matrix form, if we let

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 q} \\
\vdots & \ddots & \vdots \\
a_{p 1} & \cdots & a_{p q}
\end{array}\right), \quad b=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{p}
\end{array}\right), \quad x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{q}
\end{array}\right),
$$

then we write the above system as

$$
A x=b .
$$

(i) Prove that the 0-1 integer programming problem is in $\mathcal{N P}$.
(ii) Prove that the restricted 0-1 integer programming problem in which the coefficients of A are 0 or 1 and all entries in b are equal to 1 is $\mathcal{N} \mathcal{P}$-complete by providing a polynomial-time reduction from the bounded-tiling problem. Do not try to reduce any other problem to the 0-1 integer programming problem.
Hint. Given a tiling problem, $\left((\mathcal{T}, V, H), \widehat{s}, \sigma_{0}\right)$, create a 0 -1-valued variable, $x_{m n t}$, such that $x_{m n t}=1$ iff tile t occurs in position (m, n) in some tiling. Write equations or inequalities expressing that a tiling exists and then use "slack variables" to convert inequalities to equations. For example, to express the fact that every position is tiled by a single tile, use the equation

$$
\sum_{t \in \mathcal{T}} x_{m n t}=1,
$$

for all m, n with $1 \leq m \leq 2 s$ and $1 \leq n \leq s$. Also, if you have an inequality such as

$$
\begin{equation*}
2 x_{1}+3 x_{2}-x_{3} \leq 5 \tag{*}
\end{equation*}
$$

with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$, then using a new variable y_{1} taking its values in \mathbb{N}, that is, nonnegative values, we obtain the equation

$$
\begin{equation*}
2 x_{1}+3 x_{2}-x_{3}+y_{1}=5, \tag{**}
\end{equation*}
$$

and the inequality $(*)$ has solutions with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ iff the equation $(* *)$ has a solution with $x_{1}, x_{2}, x_{3} \in \mathbb{Z}$ and $y_{1} \in \mathbb{N}$. The variable y_{1} is called a slack variable (this terminology
comes from optimization theory, more specifically, linear programming). For the 0-1-integer programming problem, all variables, including the slack variables, take values in $\{0,1\}$.

Conclude that the 0-1 integer programming problem is $\mathcal{N} \mathcal{P}$-complete.
TOTAL: 280 points.

