Chapter 4

The Post Correspondence Problem; Applications to Undecidability Results

4.1 The Post Correspondence Problem

The Post correspondence problem (due to Emil Post) is another undecidable problem that turns out to be a very helpful tool for proving problems in logic or in formal language theory to be undecidable.

Definition 4.1. Let Σ be an alphabet with at least two letters. An instance of the Post Correspondence problem (for short, PCP) is given by two nonempty sequences $U=\left(u_{1}, \ldots, u_{m}\right)$ and $V=\left(v_{1}, \ldots, v_{m}\right)$ of strings $u_{i}, v_{i} \in$ Σ^{*}.

Equivalently, an instance of the PCP is a sequence of pairs $\left(u_{1}, v_{1}\right), \ldots,\left(u_{m}, v_{m}\right)$.

The problem is to find whether there is a (finite) sequence $\left(i_{1}, \ldots, i_{p}\right)$, with $i_{j} \in\{1, \ldots, m\}$ for $j=1, \ldots, p$, so that

$$
u_{i_{1}} u_{i_{2}} \cdots u_{i_{p}}=v_{i_{1}} v_{i_{2}} \cdots v_{i_{p}} .
$$

Example 4.1. Consider the following problem:

$$
\begin{aligned}
& (a b a b, a b a b a a a),(a a a b b b, b b),(a a b, b a a b), \\
& (b a, b a a),(a b, b a),(a a, a) .
\end{aligned}
$$

There is a solution for the string 1234556:
abab aaabbb aab ba ab ab $a a=a b a b a a a b b$ baab baa ba ba a.

If you are not convinced that this is a hard problem, try solving the following instance of the PCP:

$$
\{(a a b, a),(a b, a b b),(a b, b a b),(b a, a a b) .\}
$$

The shortest solution is a sequence of length 66 .
We are beginning to suspect that this is a hard problem. Indeed, it is undecidable!

Theorem 4.1. (Emil Post, 1946) The Post correspondence problem is undecidable, provided that the alphabet Σ has at least two symbols.

There are several ways of proving Theorem 4.1, but the strategy is more or less the same: reduce the halting problem to the PCP, by encoding sequences of ID's as partial solutions of the PCP.

In Machtey and Young [?] (Section 2.6), the undecidability of the PCP is shown by demonstrating how to simulate the computation of a Turing machine as a sequence of ID's.

IN the notes, we give a proof involving special kinds of RAM programs (called Post machines in Manna [?]), which is an adaptation of a proof due to Dana Scott presented in Manna [?] (Section 1.5.4, Theorem 1.8).

4.2 Some Undecidability Results for CFG's

Theorem 4.2. It is undecidable whether a contextfree grammar is ambiguous.
Proof. We reduce the PCP to the ambiguity problem for CFG's. Given any instance $U=\left(u_{1}, \ldots, u_{m}\right)$ and $V=$ $\left(v_{1}, \ldots, v_{m}\right)$ of the PCP, let c_{1}, \ldots, c_{m} be m new symbols, and consider the following languages:

$$
\begin{gathered}
L_{U}=\left\{u_{i_{1}} \cdots u_{i_{p}} c_{i_{p}} \cdots c_{i_{1}} \mid 1 \leq i_{j} \leq m,\right. \\
L_{V}=\left\{v_{i_{1}} \cdots v_{i_{p}} c_{i_{p}} \cdots c_{i_{1}} \mid 1 \leq i_{j} \leq m,\right. \\
1 \leq j \leq p, p \geq 1\},
\end{gathered}
$$

and $L_{U, V}=L_{U} \cup L_{V}$.

We can easily construct a $\mathrm{CFG}, G_{U, V}$, generating $L_{U, V}$. The productions are:

$$
\begin{aligned}
S & \longrightarrow S_{U} \\
S & \longrightarrow S_{V} \\
S_{U} & \longrightarrow u_{i} S_{U} c_{i} \\
S_{U} & \longrightarrow u_{i} c_{i} \\
S_{V} & \longrightarrow v_{i} S_{V} c_{i} \\
S_{V} & \longrightarrow v_{i} c_{i} .
\end{aligned}
$$

It is easily seen that the PCP for (U, V) has a solution iff $L_{U} \cap L_{V} \neq \emptyset$ iff G is ambiguous.

Remark: As a corollary, we also obtain the following result: It is undecidable for arbitrary context-free grammars G_{1} and G_{2} whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$ (see also Theorem 4.4).

Recall that the computations of a Turing Machine, M, can be described in terms of instantaneous descriptions, upav.

We can encode computations

$$
I D_{0} \vdash I D_{1} \vdash \cdots \vdash I D_{n}
$$

halting in a proper ID, as the language, L_{M}, consisting all of strings

$$
w_{0} \# w_{1}^{R} \# w_{2} \# w_{3}^{R} \# \cdots \# w_{2 k} \# w_{2 k+1}^{R}
$$

or

$$
w_{0} \# w_{1}^{R} \# w_{2} \# w_{3}^{R} \# \cdots \# w_{2 k-2} \# w_{2 k-1}^{R} \# w_{2 k}
$$

where $k \geq 0, w_{0}$ is a starting ID, $w_{i} \vdash w_{i+1}$ for all i with $0 \leq i<2 k+1$ and $w_{2 k+1}$ is proper halting ID in the first case, $0 \leq i<2 k$ and $w_{2 k}$ is proper halting ID in the second case.

The language L_{M} turns out to be the intersection of two context-free languages L_{M}^{0} and L_{M}^{1} defined as follows:
(1) The strings in L_{M}^{0} are of the form

$$
w_{0} \# w_{1}^{R} \# w_{2} \# w_{3}^{R} \# \cdots \# w_{2 k} \# w_{2 k+1}^{R}
$$

or

$$
w_{0} \# w_{1}^{R} \# w_{2} \# w_{3}^{R} \# \cdots \# w_{2 k-2} \# w_{2 k-1}^{R} \# w_{2 k}
$$

where $w_{2 i} \vdash w_{2 i+1}$ for all $i \geq 0$, and $w_{2 k}$ is a proper halting ID in the second case.
(2) The strings in L_{M}^{1} are of the form

$$
w_{0} \# w_{1}^{R} \# w_{2} \# w_{3}^{R} \# \cdots \# w_{2 k} \# w_{2 k+1}^{R}
$$

or

$$
w_{0} \# w_{1}^{R} \# w_{2} \# w_{3}^{R} \# \cdots \# w_{2 k-2} \# w_{2 k-1}^{R} \# w_{2 k}
$$

where $w_{2 i+1} \vdash w_{2 i+2}$ for all $i \geq 0, w_{0}$ is a starting ID, and $w_{2 k+1}$ is a proper halting ID in the first case.

Theorem 4.3. Given any Turing machine M, the languages L_{M}^{0} and L_{M}^{1} are context-free, and $L_{M}=$ $L_{M}^{0} \cap L_{M}^{1}$.
Proof. We can construct PDA's accepting L_{M}^{0} and L_{M}^{1}. It is easily checked that $L_{M}=L_{M}^{0} \cap L_{M}^{1}$.

As a corollary, we obtain the following undecidability result:

Theorem 4.4. It is undecidable for arbitrary contextfree grammars G_{1} and G_{2} whether $L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$. Proof. We can reduce the problem of deciding whether a partial recursive function is undefined everywhere to the above problem. By Rice's theorem, the first problem is undecidable.

However, this problem is equivalent to deciding whether a Turing machine never halts in a proper ID. By Theorem 4.3, the languages L_{M}^{0} and L_{M}^{1} are context-free. Thus, we can construct context-free grammars G_{1} and G_{2} so that $L_{M}^{0}=L\left(G_{1}\right)$ and $L_{M}^{1}=L\left(G_{2}\right)$. Then, M never halts in a proper ID iff $L_{M}=\emptyset$ iff (by Theorem 4.3), $L_{M}=L\left(G_{1}\right) \cap L\left(G_{2}\right)=\emptyset$.

Given a Turing machine M, the language L_{M} is defined over the alphabet $\Delta=\Gamma \cup Q \cup\{\#\}$. The following fact is also useful to prove undecidability:

Theorem 4.5. Given any Turing machine M, the language $\Delta^{*}-L_{M}$ is context-free.
Proof. One can easily check that the conditions for not belonging to L_{M} can be checked by a PDA.

As a corollary, we obtain:

Theorem 4.6. Given any context-free grammar, $G=(V, \Sigma, P, S)$, it is undecidable whether $L(G)=\Sigma^{*}$.

Proof. We can reduce the problem of deciding whether a Turing machine never halts in a proper ID to the above problem.

Indeed, given M, by Theorem 4.5, the language $\Delta^{*}-L_{M}$ is context-free. Thus, there is a CFG, G, so that $L(G)=$ $\Delta^{*}-L_{M}$. However, M never halts in a proper ID iff $L_{M}=\emptyset$ iff $L(G)=\Delta^{*}$.

As a consequence, we also obtain the following:

Theorem 4.7. Given any two context-free grammar, G_{1} and G_{2}, and any regular language, R, the following facts hold:
(1) $L\left(G_{1}\right)=L\left(G_{2}\right)$ is undecidable.
(2) $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$ is undecidable.
(3) $L\left(G_{1}\right)=R$ is undecidable.
(4) $R \subseteq L\left(G_{2}\right)$ is undecidable.

In contrast to (4), the property $L\left(G_{1}\right) \subseteq R$ is decidable!

4.3 More Undecidable Properties of Languages; Greibach's Theorem

We conclude with a nice theorem of S . Greibach, which is a sort of version of Rice's theorem for families of languages.

Let \mathcal{L} be a countable family of languages. We assume that there is a coding function $c: \mathcal{L} \rightarrow \mathbb{N}$ and that this function can be extended to code the regular languages (all alphabets are subsets of some given countably infinite set).

We also assume that \mathcal{L} is effectively closed under union, and concatenation with the regular languages.

This means that given any two languages L_{1} and L_{2} in \mathcal{L}, we have $L_{1} \cup L_{2} \in \mathcal{L}$, and $c\left(L_{1} \cup L_{2}\right)$ is given by a recursive function of $c\left(L_{1}\right)$ and $c\left(L_{2}\right)$, and that for every regular language R, we have $L_{1} R \in \mathcal{L}, R L_{1} \in \mathcal{L}$, and $c\left(R L_{1}\right)$ and $c\left(L_{1} R\right)$ are recursive functions of $c(R)$ and $c\left(L_{1}\right)$. Given any language, $L \subseteq \Sigma^{*}$, and any string, $w \in \Sigma^{*}$, we define L / w by

$$
L / w=\left\{u \in \Sigma^{*} \mid u w \in L\right\}
$$

Theorem 4.8. (Greibach) Let \mathcal{L} be a countable family of languages that is effectively closed under union, and concatenation with the regular languages, and assume that the problem $L=\Sigma^{*}$ is undecidable for $L \in \mathcal{L}$ and any given sufficiently large alphabet Σ. Let P be any nontrivial property of languages that is true for the regular languages, and so that if $P(L)$ holds for any $L \in \mathcal{L}$, then $P(L / a)$ also holds for any letter a. Then, P is undecidable for \mathcal{L}.

Proof. Since P is nontrivial for \mathcal{L}, there is some $L_{0} \in \mathcal{L}$ so that $P\left(L_{0}\right)$ is false.

Let Σ be large enough, so that $L_{0} \subseteq \Sigma^{*}$, and the problem $L=\Sigma^{*}$ is undecidable for $L \in \mathcal{L}$.

We show that given any $L \in \mathcal{L}$, with $L \subseteq \Sigma^{*}$, we can construct a language $L_{1} \in \mathcal{L}$, so that $L=\Sigma^{*}$ iff $P\left(L_{1}\right)$ holds. Thus, the problem $L=\Sigma^{*}$ for $L \in \mathcal{L}$ reduces to property P for \mathcal{L}, and since for Σ big enough, the first problem is undecidable, so is the second.

For any $L \in \mathcal{L}$, with $L \subseteq \Sigma^{*}$, let

$$
L_{1}=L_{0} \# \Sigma^{*} \cup \Sigma^{*} \# L
$$

Since \mathcal{L} is effectively closed under union and concatenation with the regular languages, we have $L_{1} \in \mathcal{L}$.

If $L=\Sigma^{*}$, then $L_{1}=\Sigma^{*} \# \Sigma^{*}$, a regular language, and thus, $P\left(L_{1}\right)$ holds, since P holds for the regular languages. Conversely, we would like to prove that if $L \neq \Sigma^{*}$, then $P\left(L_{1}\right)$ is false.

Since $L \neq \Sigma^{*}$, there is some $w \notin L$. But then,

$$
L_{1} / \# w=L_{0}
$$

Since P is preserved under quotient by a single letter, by a trivial induction, if $P\left(L_{1}\right)$ holds, then $P\left(L_{0}\right)$ also holds. However, $P\left(L_{0}\right)$ is false, so $P\left(L_{1}\right)$ must be false.

Thus, we proved that $L=\Sigma^{*}$ iff $P\left(L_{1}\right)$ holds, as claimed.

Greibach's theorem can be used to show that it is undecidable whether a context-free grammar generates a regular language.

It can also be used to show that it is undecidable whether a context-free language is inherently ambiguous.

