
Chapter 4

The Post Correspondence Problem;
Applications to Undecidability
Results

4.1 The Post Correspondence Problem

The Post correspondence problem (due to Emil Post) is
another undecidable problem that turns out to be a very
helpful tool for proving problems in logic or in formal
language theory to be undecidable.

213

214 CHAPTER 4. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

Definition 4.1. Let ⌃ be an alphabet with at least two
letters. An instance of the Post Correspondence prob-
lem (for short, PCP) is given by two nonempty sequences
U = (u1, . . . , um) and V = (v1, . . . , vm) of strings ui, vi 2
⌃⇤.

Equivalently, an instance of the PCP is a sequence of pairs
(u1, v1), . . . , (um, vm).

The problem is to find whether there is a (finite) sequence
(i1, . . . , ip), with ij 2 {1, . . . , m} for j = 1, . . . , p, so
that

ui1ui2 · · · uip = vi1vi2 · · · vip.

Example 4.1. Consider the following problem:

(abab, ababaaa), (aaabbb, bb), (aab, baab),

(ba, baa), (ab, ba), (aa, a).

There is a solution for the string 1234556:

abab aaabbb aab ba ab ab aa = ababaaa bb baab baa ba ba a.

4.1. THE POST CORRESPONDENCE PROBLEM 215

If you are not convinced that this is a hard problem, try
solving the following instance of the PCP:

{(aab, a), (ab, abb), (ab, bab), (ba, aab).}

The shortest solution is a sequence of length 66.

We are beginning to suspect that this is a hard problem.
Indeed, it is undecidable!

Theorem 4.1. (Emil Post, 1946) The Post corre-
spondence problem is undecidable, provided that the
alphabet ⌃ has at least two symbols.

216 CHAPTER 4. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

There are several ways of proving Theorem 4.1, but the
strategy is more or less the same: reduce the halting prob-
lem to the PCP, by encoding sequences of ID’s as partial
solutions of the PCP.

In Machtey and Young [?] (Section 2.6), the undecidabil-
ity of the PCP is shown by demonstrating how to simu-
late the computation of a Turing machine as a sequence
of ID’s.

IN the notes, we give a proof involving special kinds
of RAM programs (called Post machines in Manna [?]),
which is an adaptation of a proof due to Dana Scott pre-
sented in Manna [?] (Section 1.5.4, Theorem 1.8).

4.2. SOME UNDECIDABILITY RESULTS FOR CFG’S 217

4.2 Some Undecidability Results for CFG’s

Theorem 4.2. It is undecidable whether a context-
free grammar is ambiguous.

Proof. We reduce the PCP to the ambiguity problem for
CFG’s. Given any instance U = (u1, . . . , um) and V =
(v1, . . . , vm) of the PCP, let c1, . . . , cm bem new symbols,
and consider the following languages:

LU = {ui1 · · · uipcip · · · ci1 | 1  ij  m,

1  j  p, p � 1},

LV = {vi1 · · · vipcip · · · ci1 | 1  ij  m,

1  j  p, p � 1},

and LU,V = LU [LV .

218 CHAPTER 4. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

We can easily construct a CFG, GU,V , generating LU,V .
The productions are:

S �! SU

S �! SV

SU �! uiSUci

SU �! uici

SV �! viSV ci

SV �! vici.

It is easily seen that the PCP for (U, V) has a solution i↵
LU \ LV 6= ; i↵ G is ambiguous.

Remark: As a corollary, we also obtain the following
result: It is undecidable for arbitrary context-free gram-
mars G1 and G2 whether L(G1) \ L(G2) = ; (see also
Theorem 4.4).

4.2. SOME UNDECIDABILITY RESULTS FOR CFG’S 219

Recall that the computations of a Turing Machine, M ,
can be described in terms of instantaneous descriptions,
upav.

We can encode computations

ID0 ` ID1 ` · · · ` IDn

halting in a proper ID, as the language, LM , consisting
all of strings

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1,

or

w0#wR
1 #w2#wR

3 # · · ·#w2k�2#wR
2k�1#w2k,

where k � 0, w0 is a starting ID, wi ` wi+1 for all i with
0  i < 2k + 1 and w2k+1 is proper halting ID in the
first case, 0  i < 2k and w2k is proper halting ID in the
second case.

220 CHAPTER 4. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

The language LM turns out to be the intersection of two
context-free languages L0

M and L1
M defined as follows:

(1) The strings in L0
M are of the form

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1

or

w0#wR
1 #w2#wR

3 # · · ·#w2k�2#wR
2k�1#w2k,

where w2i ` w2i+1 for all i � 0, and w2k is a proper
halting ID in the second case.

(2) The strings in L1
M are of the form

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1

or

w0#wR
1 #w2#wR

3 # · · ·#w2k�2#wR
2k�1#w2k,

where w2i+1 ` w2i+2 for all i � 0, w0 is a starting ID,
and w2k+1 is a proper halting ID in the first case.

4.2. SOME UNDECIDABILITY RESULTS FOR CFG’S 221

Theorem 4.3. Given any Turing machine M , the
languages L0

M and L1
M are context-free, and LM =

L0
M \ L1

M .

Proof. We can construct PDA’s accepting L0
M and L1

M .
It is easily checked that LM = L0

M \ L1
M .

As a corollary, we obtain the following undecidability re-
sult:

Theorem 4.4. It is undecidable for arbitrary context-
free grammars G1 and G2 whether L(G1)\L(G2) = ;.
Proof. We can reduce the problem of deciding whether a
partial recursive function is undefined everywhere to the
above problem. By Rice’s theorem, the first problem is
undecidable.

222 CHAPTER 4. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

However, this problem is equivalent to deciding whether a
Turing machine never halts in a proper ID. By Theorem
4.3, the languages L0

M and L1
M are context-free. Thus,

we can construct context-free grammars G1 and G2 so
that L0

M = L(G1) and L1
M = L(G2). Then, M never

halts in a proper ID i↵ LM = ; i↵ (by Theorem 4.3),
LM = L(G1) \ L(G2) = ;.

Given a Turing machine M , the language LM is defined
over the alphabet � = � [Q [{#}. The following fact
is also useful to prove undecidability:

Theorem 4.5. Given any Turing machine M , the
language �⇤ � LM is context-free.

Proof. One can easily check that the conditions for not
belonging to LM can be checked by a PDA.

4.2. SOME UNDECIDABILITY RESULTS FOR CFG’S 223

As a corollary, we obtain:

Theorem 4.6. Given any context-free grammar,
G = (V,⌃, P, S), it is undecidable whether L(G) = ⌃⇤.

Proof. We can reduce the problem of deciding whether a
Turing machine never halts in a proper ID to the above
problem.

Indeed, given M , by Theorem 4.5, the language �⇤�LM

is context-free. Thus, there is a CFG, G, so that L(G) =
�⇤ � LM . However, M never halts in a proper ID i↵
LM = ; i↵ L(G) = �⇤.

As a consequence, we also obtain the following:

224 CHAPTER 4. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

Theorem 4.7. Given any two context-free grammar,
G1 and G2, and any regular language, R, the following
facts hold:

(1) L(G1) = L(G2) is undecidable.

(2) L(G1) ✓ L(G2) is undecidable.

(3) L(G1) = R is undecidable.

(4) R ✓ L(G2) is undecidable.

In contrast to (4), the property L(G1) ✓ R is decidable!

4.3. MORE UNDECIDABLE PROPERTIES OF LANGUAGES 225

4.3 More Undecidable Properties of Languages;

Greibach’s Theorem

We conclude with a nice theorem of S. Greibach, which
is a sort of version of Rice’s theorem for families of lan-
guages.

Let L be a countable family of languages. We assume
that there is a coding function c : L ! N and that this
function can be extended to code the regular languages
(all alphabets are subsets of some given countably infinite
set).

We also assume that L is e↵ectively closed under union,
and concatenation with the regular languages.

This means that given any two languages L1 and L2 in
L, we have L1 [L2 2 L, and c(L1 [L2) is given by a
recursive function of c(L1) and c(L2), and that for every
regular language R, we have L1R 2 L, RL1 2 L, and
c(RL1) and c(L1R) are recursive functions of c(R) and
c(L1).

226 CHAPTER 4. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

Given any language, L ✓ ⌃⇤, and any string, w 2 ⌃⇤, we
define L/w by

L/w = {u 2 ⌃⇤ | uw 2 L}.

Theorem 4.8. (Greibach) Let L be a countable family
of languages that is e↵ectively closed under union, and
concatenation with the regular languages, and assume
that the problem L = ⌃⇤ is undecidable for L 2 L and
any given su�ciently large alphabet ⌃. Let P be any
nontrivial property of languages that is true for the
regular languages, and so that if P (L) holds for any
L 2 L, then P (L/a) also holds for any letter a. Then,
P is undecidable for L.
Proof. Since P is nontrivial for L, there is some L0 2 L
so that P (L0) is false.

Let ⌃ be large enough, so that L0 ✓ ⌃⇤, and the problem
L = ⌃⇤ is undecidable for L 2 L.

4.3. MORE UNDECIDABLE PROPERTIES OF LANGUAGES 227

We show that given any L 2 L, with L ✓ ⌃⇤, we can
construct a language L1 2 L, so that L = ⌃⇤ i↵ P (L1)
holds. Thus, the problem L = ⌃⇤ for L 2 L reduces to
property P for L, and since for ⌃ big enough, the first
problem is undecidable, so is the second.

For any L 2 L, with L ✓ ⌃⇤, let

L1 = L0#⌃⇤ [⌃⇤#L.

Since L is e↵ectively closed under union and concatena-
tion with the regular languages, we have L1 2 L.

If L = ⌃⇤, then L1 = ⌃⇤#⌃⇤, a regular language, and
thus, P (L1) holds, since P holds for the regular lan-
guages.

228 CHAPTER 4. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

Conversely, we would like to prove that if L 6= ⌃⇤, then
P (L1) is false.

Since L 6= ⌃⇤, there is some w /2 L. But then,

L1/#w = L0.

Since P is preserved under quotient by a single letter, by
a trivial induction, if P (L1) holds, then P (L0) also holds.
However, P (L0) is false, so P (L1) must be false.

Thus, we proved that L = ⌃⇤ i↵ P (L1) holds, as claimed.

Greibach’s theorem can be used to show that it is undecid-
able whether a context-free grammar generates a regular
language.

It can also be used to show that it is undecidable whether
a context-free language is inherently ambiguous.

