Chapter 4

The Post Correspondence Problem;
Applications to Undecidability
Results

4.1 The Post Correspondence Problem

The Post correspondence problem (due to Emil Post) is
another undecidable problem that turns out to be a very
helpful tool for proving problems in logic or in formal
language theory to be undecidable.
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Definition 4.1. Let X be an alphabet with at least two
letters. An instance of the Post Correspondence prob-
lem (for short, PCP) is given by two nonempty sequences
U= (u1,...,uy)andV = (vy,...,v,) of strings u;, v; €
>,

Equivalently, an instance of the PCP is a sequence of pairs
(U1, 1)y« (U, Umn).

The problem is to find whether there is a (finite) sequence
(%1, ...,1p), with 4, € {1,...,m} for j = 1,...,p, so
that

uZluZQ ) u/[,p o /UH/UZQ o« o o Ulp'

Example 4.1. Consider the following problem:

(abab, ababaaa), (aaabbb, bb), (aab, baab),
(ba, baa), (ab, ba), (aa, a).

There is a solution for the string 1234556:

abab aaabbb aab ba ab ab aa = ababaaa bb baab baa ba ba a.
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If you are not convinced that this is a hard problem, try
solving the following instance of the PCP:

{(aab, a), (ab, abb), (ab, bab), (ba, aab).}

The shortest solution is a sequence of length 66.

We are beginning to suspect that this is a hard problem.
Indeed, it is undecidable!

Theorem 4.1. (Emil Post, 1946) The Post corre-
spondence problem is undecidable, provided that the
alphabet X has at least two symbols.
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There are several ways of proving Theorem 4.1, but the
strategy is more or less the same: reduce the halting prob-
lem to the PCP, by encoding sequences of ID’s as partial
solutions of the PCP.

In Machtey and Young [?] (Section 2.6), the undecidabil-
ity of the PCP is shown by demonstrating how to simu-
late the computation of a Turing machine as a sequence

of ID’s.

IN the notes, we give a proof involving special kinds
of RAM programs (called Post machines in Manna |?]),
which is an adaptation of a proot due to Dana Scott pre-
sented in Manna [?] (Section 1.5.4, Theorem 1.8).
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4.2 Some Undecidability Results for CFG’s

Theorem 4.2. It i1s undecidable whether a context-
free grammar is ambiguous.

Proof. We reduce the PCP to the ambiguity problem for
CFG’s. Given any instance U = (uq,...,u;) and V =
(v1, ..., vy) of the PCP, let ¢q, . . ., ¢, be m new symbols,
and consider the following languages:

Ly = {uwi - uici ey | 1 <ip <m,
1<j<p, p>1},

Ly ={vi, - -vici,- ¢y | 1 <ij <m,
1<j<p p>1},

and LUy — LU U Lv.
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We can easily construct a CFG, Gy, generating Ly
The productions are:

S — SU
S — SV
SU — uz'SUCi
Sy — u¢
Sy — Sy
Sy — Vi

[t is easily seen that the PCP for (U, V') has a solution iff
Ly N Ly # 0 iff G is ambiguous. ]

Remark: As a corollary, we also obtain the following
result: It is undecidable for arbitrary context-free gram-
mars G and G9 whether L(G1) N L(G3) = 0 (see also
Theorem 4.4).
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Recall that the computations of a Turing Machine, M,
can be described in terms of instantaneous descriptions,
upav.

We can encode computations
IDy-IDyF---FH1D,

halting in a proper ID, as the language, Lj;, consisting
all of strings

R R R
WoH W] FWoFFW3 FF + + * FWopHF Wy 1,

or

wo#w{%#wz#wﬁz #* #ka—Z#wi—l#w%a

where k£ > 0, wy is a starting 1D, w; F w1 for all ¢ with
0 <1 < 2k + 1 and w1 is proper halting ID in the
first case, 0 < ¢ < 2k and wy; is proper halting ID in the
second case.
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The language Lj; turns out to be the intersection of two
context-free languages LY, and L}, defined as follows:

(1) The strings in LY, are of the form
wo#wf“#wg#w? iR #ka#wiJrl
or
woFkwy FwadwyH - - - Fwap ot wy;_ Fwor,

where woy; F w91 for all ¢+ > 0, and wsyy, is a proper
halting ID in the second case.

(2) The strings in L}, are of the form
woBwy FwaAhws H - - - FwaAfwy
or
R R R
WoFH W, FWrFWS T * * FWok— 27 Wap,_ F W2k,

where wg; 1 F we; 4o for all © > 0, wy is a starting 1D,
and woyy41 18 a proper halting ID in the first case.
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Theorem 4.3. Giwen any Turing machine M, the

languages LY, and LY, are context-free, and Ly =
LY, N L,

Proof. We can construct PDA’s accepting LY, and Lj,.
[t is easily checked that Ly, = LY, N L},. ]

As a corollary, we obtain the following undecidability re-
sult:

Theorem 4.4. It is undecidable for arbitrary context-
free grammars G1 and Gy whether L(G1) N L(Gs) = ().

Proof. We can reduce the problem of deciding whether a
partial recursive function is undefined everywhere to the
above problem. By Rice’s theorem, the first problem is
undecidable.



222 CHAPTER 4. THE POST CORRESPONDENCE PROBLEM; APPLICATIONS

However, this problem is equivalent to deciding whether a
Turing machine never halts in a proper ID. By Theorem
4.3, the languages LY, and L}, are context-free. Thus,
we can construct context-free grammars G; and G9 so
that LY, = L(Gy) and L}, = L(Gs). Then, M never
halts in a proper ID iff Ly, = @ iff (by Theorem 4.3),
Ly = L(G1) N L(Gy) = 0. ]

Given a Turing machine M, the language L), is defined
over the alphabet A = T'U Q U {#}. The following fact
is also usetul to prove undecidability:

Theorem 4.5. Given any Turing machine M, the
language A* — Ly 1s context-free.

Proof. One can easily check that the conditions for not
belonging to Lj; can be checked by a PDA. ]
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As a corollary, we obtain:

Theorem 4.6. Given any context-free grammar,

G = (V,X, P, S), it is undecidable whether L(G) = X*.

Proof. We can reduce the problem of deciding whether a
Turing machine never halts in a proper ID to the above
problem.

Indeed, given M, by Theorem 4.5, the language A* — Ly,
is context-free. Thus, there is a CFG, G, so that L(G) =

A* — Ly;. However, M never halts in a proper ID iff
Ly =0iff L(G) = A*. ]

As a consequence, we also obtain the following:
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Theorem 4.7. Given any two context-free grammoar,
G1 and Gs, and any reqular language, R, the following
facts hold:

(1) L(G1) = L(G3) is undecidable.
(2) L(G1) C L(Gs) is undecidable.
(3) L(G1) = R is undecidable.
(4) R C L(G5) is undecidable.

In contrast to (4), the property L(G1) C R is decidable!
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4.3 More Undecidable Properties of Languages;
Greibach’s Theorem

We conclude with a nice theorem of S. Greibach, which
1s a sort of version of Rice’s theorem for families of lan-
guages.

Let £ be a countable family of languages. We assume
that there is a coding function ¢: £ — N and that this
function can be extended to code the regular languages
(all alphabets are subsets of some given countably infinite
set).

We also assume that £ is effectively closed under union,
and concatenation with the regular languages.

This means that given any two languages L and Lo in
L, we have Ly U Ly € L, and ¢(L1 U Ly) is given by a
recursive function of ¢(L1) and ¢(Ls), and that for every
regular language R, we have L1R € L, RL,; € L, and
c¢(RLy) and ¢(L1R) are recursive functions of ¢(R) and
C<L1>.
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Given any language, L C X*, and any string, w € X*, we
define L/w by

L/w=Aue¥X" |uwe L}

Theorem 4.8. (Greibach) Let L be a countable family
of languages that is effectively closed under union, and
concatenation with the reqular languages, and assume
that the problem L = X* is undecidable for L € L and
any given sufficiently large alphabet . Let P be any
nontrivial property of languages that is true for the
reqular languages, and so that if P(L) holds for any
L € L, then P(L/a) also holds for any letter a. Then,
P is undecidable for L.

Proof. Since P is nontrivial for £, there is some Ly € L
so that P(Lyg) is false.

Let X2 be large enough, so that Ly C X*, and the problem
L = >* is undecidable for L € L.
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We show that given any L € L, with L C X* we can
construct a language Ly € L, so that L = >* iff P(L,)

holds. Thus, the problem L = »* for L € L reduces to
property P for £, and since for X big enough, the first
problem is undecidable, so is the second.

For any L € L, with L C X*, let

Ly = Lot U Y 4L,

Since L is effectively closed under union and concatena-
tion with the regular languages, we have L € L.

If L = X% then Ly = X'#X*, a regular language, and
thus, P(L;) holds, since P holds for the regular lan-
guages.
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Conversely, we would like to prove that if L = >*, then
P(Ly) is false.

Since L # 3*, there is some w ¢ L. But then,
Ll/#w — Lo.

Since P is preserved under quotient by a single letter, by
a trivial induction, if P(Lq) holds, then P(Lg) also holds.
However, P(Lg) is false, so P(L1) must be false.

Thus, we proved that L = >* iff P(L;) holds, as claimed.
[]

Greibach’s theorem can be used to show that it is undecid-
able whether a context-free grammar generates a regular
language.

It can also be used to show that it 1s undecidable whether
a context-free language is inherently ambiguous.



