Chapter 10

The Post Correspondence Problem; Applications to Undecidability
Results

10.1 The Post Correspondence Problem

The Post correspondence problem (due to Emil Post) is another undecidable problem that turns out to be a very helpful tool for proving problems in logic or in formal language theory to be undecidable.

Let Σ be an alphabet with at least two letters. An instance of the Post Correspondence problem (for short, PCP) is given by two sequences $U = (u_1, \ldots, u_m)$ and $V = (v_1, \ldots, v_m)$, of strings $u_i, v_i \in \Sigma^*$.
The problem is to find whether there is a (finite) sequence \((i_1, \ldots, i_p)\), with \(i_j \in \{1, \ldots, m\}\) for \(j = 1, \ldots, p\), so that
\[
u_{i_1} u_{i_2} \cdots u_{i_p} = v_{i_1} v_{i_2} \cdots v_{i_p}.
\]

Equivalently, an instance of the PCP is a sequence of pairs
\[
\left(\begin{array}{c} u_1 \\
v_1 \end{array} \right), \ldots, \left(\begin{array}{c} u_m \\
v_m \end{array} \right).
\]
For example, consider the following problem:

\[(abab, ababaaa), (aaabbb, bb), (aab, baab), (ba, baa), (ab, ba), (aa, a).\]

There is a solution for the string 1234556:

\[abab aaabbb aab ba ab ab aa = ababaaa bb baab baa ba ba a.\]

We are beginning to suspect that this is a hard problem. Indeed, it is undecidable!

Theorem 10.1. *(Emil Post, 1946)* The Post correspondence problem is undecidable, provided that the alphabet Σ has at least two symbols.
There are several ways of proving Theorem 10.1, but the strategy is more or less the same: Reduce the halting problem to the PCP, by encoding sequences of ID’s as partial solutions of the PCP.

For instance, this can be done for RAM programs. The first step is to show that every RAM program can be simulated by a single register RAM program.

Then, the halting problem for RAM programs with one register is reduced to the PCP (using the fact that only four kinds of instructions are needed). A proof along these lines was given by Dana Scott.
10.2 Some Undecidability Results for CFG’s

Theorem 10.2. It is undecidable whether a context-free grammar is ambiguous.

Proof. We reduce the PCP to the ambiguity problem for CFG’s. Given any instance \(U = (u_1, \ldots, u_m) \) and \(V = (v_1, \ldots, v_m) \) of the PCP, let \(c_1, \ldots, c_m \) be \(m \) new symbols, and consider the following languages:

\[
L_U = \{ u_{i_1} \cdots u_{i_p} c_{i_p} \cdots c_{i_1} \mid 1 \leq i_j \leq m, 1 \leq j \leq p, p \geq 1 \},
\]

\[
L_V = \{ v_{i_1} \cdots v_{i_p} c_{i_p} \cdots c_{i_1} \mid 1 \leq i_j \leq m, 1 \leq j \leq p, p \geq 1 \},
\]

and \(L_{U,V} = L_U \cup L_V \).
We can easily construct a CFG, $G_{U,V}$, generating $L_{U,V}$. The productions are:

$$
\begin{align*}
S & \rightarrow S_U \\
S & \rightarrow S_V \\
S_U & \rightarrow u_i S_U c_i \\
S_U & \rightarrow u_i c_i \\
S_V & \rightarrow v_i S_V c_i \\
S_V & \rightarrow v_i c_i.
\end{align*}
$$

It is easily seen that the PCP for (U, V) has a solution iff $L_U \cap L_V \neq \emptyset$ iff G is ambiguous. \qed

Remark: As a corollary, we also obtain the following result: It is undecidable for arbitrary context-free grammars G_1 and G_2 whether $L(G_1) \cap L(G_2) = \emptyset$ (see also Theorem 10.4).
Recall that the computations of a Turing Machine, M, can be described in terms of instantaneous descriptions, $upav$.

We can encode computations

$$ID_0 \vdash ID_1 \vdash \cdots \vdash ID_n$$

halting in a proper ID, as the language, L_M, consisting all of strings

$$w_0 \# w_1^R \# w_2 \# w_3^R \# \cdots \# w_{2k} \# w_{2k+1}^R,$$

or

$$w_0 \# w_1^R \# w_2 \# w_3^R \# \cdots \# w_{2k-2} \# w_{2k-1}^R \# w_{2k},$$

where $k \geq 0$, w_0 is a starting ID, $w_i \vdash w_{i+1}$ for all i with $0 \leq i < 2k + 1$ and w_{2k+1} is proper halting ID in the first case, $0 \leq i < 2k$ and w_{2k} is proper halting ID in the second case.
The language L_M turns out to be the intersection of two context-free languages L^0_M and L^1_M defined as follows:

1. The strings in L^0_M are of the form
 \[w_0 \# w_1^R \# w_2 \# w_3^R \# \cdots \# w_k \# w_{2k+1} \]
 or
 \[w_0 \# w_1^R \# w_2 \# w_3^R \# \cdots \# w_k \# w_{2k} \]
 where $w_{2i} \vdash w_{2i+1}$ for all $i \geq 0$, and w_{2k} is a proper halting ID in the second case.

2. The strings in L^1_M are of the form
 \[w_0 \# w_1^R \# w_2 \# w_3^R \# \cdots \# w_k \# w_{2k+1} \]
 or
 \[w_0 \# w_1^R \# w_2 \# w_3^R \# \cdots \# w_k \# w_{2k} \]
 where $w_{2i+1} \vdash w_{2i+2}$ for all $i \geq 0$, w_0 is a starting ID, and w_{2k+1} is a proper halting ID in the first case.
Theorem 10.3. Given any Turing machine M, the languages L^0_M and L^1_M are context-free, and $L_M = L^0_M \cap L^1_M$.

Proof. We can construct PDA’s accepting L^0_M and L^1_M. It is easily checked that $L_M = L^0_M \cap L^1_M$. \qed

As a corollary, we obtain the following undecidability result:

Theorem 10.4. It is undecidable for arbitrary context-free grammars G_1 and G_2 whether $L(G_1) \cap L(G_2) = \emptyset$.

Proof. We can reduce the problem of deciding whether a partial recursive function is undefined everywhere to the above problem. By Rice’s theorem, the first problem is undecidable.
However, this problem is equivalent to deciding whether a Turing machine never halts in a proper ID. By Theorem 10.3, the languages L_M^0 and L_M^1 are context-free. Thus, we can construct context-free grammars G_1 and G_2 so that $L_M^0 = L(G_1)$ and $L_M^1 = L(G_2)$. Then, M never halts in a proper ID iff $L_M = \emptyset$ iff (by Theorem 10.3), $L_M = L(G_1) \cap L(G_2) = \emptyset$.

Given a Turing machine M, the language L_M is defined over the alphabet $\Delta = \Gamma \cup Q \cup \{\#\}$. The following fact is also useful to prove undecidability:

Theorem 10.5. Given any Turing machine M, the language $\Delta^* - L_M$ is context-free.

Proof. One can easily check that the conditions for not belonging to L_M can be checked by a PDA. \qed
As a corollary, we obtain:

Theorem 10.6. Given any context-free grammar, $G = (V, \Sigma, P, S)$, it is undecidable whether $L(G) = \Sigma^*$.

Proof. We can reduce the problem of deciding whether a Turing machine never halts in a proper ID to the above problem.

Indeed, given M, by Theorem 10.5, the language $\Delta^* - L_M$ is context-free. Thus, there is a CFG, G, so that $L(G) = \Delta^* - L_M$. However, M never halts in a proper ID iff $L_M = \emptyset$ iff $L(G) = \Delta^*$.

As a consequence, we also obtain the following:
Theorem 10.7. Given any two context-free grammar, G_1 and G_2, and any regular language, R, the following facts hold:

(1) $L(G_1) = L(G_2)$ is undecidable.
(2) $L(G_1) \subseteq L(G_2)$ is undecidable.
(3) $L(G_1) = R$ is undecidable.
(4) $R \subseteq L(G_2)$ is undecidable.

In contrast to (4), the property $L(G_1) \subseteq R$ is decidable!
10.3 More Undecidable Properties of Languages; Greibach’s Theorem

We conclude with a nice theorem of S. Greibach, which is a sort of version of Rice’s theorem for families of languages.

Let \mathcal{L} be a countable family of languages. We assume that there is a coding function $c: \mathcal{L} \rightarrow \mathbb{N}$ and that this function can be extended to code the regular languages (all alphabets are subsets of some given countably infinite set).

We also assume that \mathcal{L} is effectively closed under union, and concatenation with the regular languages.

This means that given any two languages L_1 and L_2 in \mathcal{L}, we have $L_1 \cup L_2 \in \mathcal{L}$, and $c(L_1 \cup L_2)$ is given by a recursive function of $c(L_1)$ and $c(L_2)$, and that for every regular language R, we have $L_1R \in \mathcal{L}$, $RL_1 \in \mathcal{L}$, and $c(RL_1)$ and $c(L_1R)$ are recursive functions of $c(R)$ and $c(L_1)$.
Given any language, $L \subseteq \Sigma^*$, and any string, $w \in \Sigma^*$, we define L/w by

$$L/w = \{ u \in \Sigma^* \mid uw \in L \}.$$

Theorem 10.8. (Greibach) Let \mathcal{L} be a countable family of languages that is effectively closed under union, and concatenation with the regular languages, and assume that the problem $L = \Sigma^*$ is undecidable for $L \in \mathcal{L}$ and any given sufficiently large alphabet Σ.

Let P be any nontrivial property of languages that is true for the regular languages, and so that if $P(L)$ holds for any $L \in \mathcal{L}$, then $P(L/a)$ also holds for any letter a. Then, P is undecidable for \mathcal{L}.

Proof. Since P is nontrivial for \mathcal{L}, there is some $L_0 \in \mathcal{L}$ so that $P(L_0)$ is false.

Let Σ be large enough, so that $L_0 \subseteq \Sigma^*$, and the problem $L = \Sigma^*$ is undecidable for $L \in \mathcal{L}$.
10.3. MORE UNDECIDABLE PROPERTIES OF LANGUAGES

We show that given any $L \in \mathcal{L}$, with $L \subseteq \Sigma^*$, we can construct a language $L_1 \in \mathcal{L}$, so that $L = \Sigma^*$ iff $P(L_1)$ holds. Thus, the problem $L = \Sigma^*$ for $L \in \mathcal{L}$ reduces to property P for \mathcal{L}, and since for Σ big enough, the first problem is undecidable, so is the second.

For any $L \in \mathcal{L}$, with $L \subseteq \Sigma^*$, let

$$L_1 = L_0 \# \Sigma^* \cup \Sigma^* \# L.$$

Since \mathcal{L} is effectively closed under union and concatenation with the regular languages, we have $L_1 \in \mathcal{L}$.

If $L = \Sigma^*$, then $L_1 = \Sigma^* \# \Sigma^*$, a regular language, and thus, $P(L_1)$ holds, since P holds for the regular languages.
Conversely, we would like to prove that if $L \neq \Sigma^*$, then $P(L_1)$ is false.

Since $L \neq \Sigma^*$, there is some $w \notin L$. But then,

$$L_1/\#w = L_0.$$

Since P is preserved under quotient by a single letter, by a trivial induction, if $P(L_1)$ holds, then $P(L_0)$ also holds. However, $P(L_0)$ is false, so $P(L_1)$ must be false.

Thus, we proved that $L = \Sigma^*$ iff $P(L_1)$ holds, as claimed.

Greibach’s theorem can be used to show that it is undecidable whether a context-free grammar generates a regular language.

It can also be used to show that it is undecidable whether a context-free language is inherently ambiguous.