
Chapter 10

Listable Sets and Diophantine Sets;
Hilbert’s Tenth Problem

10.1 Diophantine Equations and Hilbert’s
Tenth Problem

There is a deep and a priori unexpected connection be-
tween the theory of computable and listable sets and the
solutions of polynomial equations involving polynomials
in several variables with integer coefficients.

These are polynomials in n ≥ 1 variables x1, . . . , xn
which are finite sums of monomials of the form

axk11 · · ·xknn ,

where k1, . . . , kn ∈ N are nonnegative integers, and a ∈
Z is an integer (possibly negative).
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The natural number k1 + · · · + kn is called the degree of
the monomial axk11 · · ·xknn .

For example, if n = 3, then

1. 5, −7, are monomials of degree 0.

2. 3x1, −2x2, are monomials of degree 1.

3. x1x2, 2x21, 3x1x3, −5x22, are monomials of degree 2.

4. x1x2x3, x21x3, −x32, are monomials of degree 3.

5. x41, −x21x23, x1x22x3, are monomials of degree 4.

Definition 10.1. A polynomial P (x1, . . . , xn) in the
variables x1, . . . , xn with integer coefficients is a finite
sum of monomials of the form axk11 · · ·xknn . The max-
imum of the degrees k1 + · · · + kn of the monomials
axk11 · · · xknn . is called the total degree of the polynomial
P (x1, . . . , xn). The set of all such polynomials is denoted
by Z[x1, . . . , xn].

Sometimes, we write P instead of P (x1, . . . , xn). We also
use variables x, y, z etc. instead of x1, x2, x3, . . ..
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For example, 2x− 3y − 1 is a polynomial of total degree
1, x2 + y2 − z2 is a polynomial of total degree 2, and
x3 + y3 + z3 − 29 is a polynomial of total degree 3.

Mathematicians have been interested for a long time in
the problem of solving equations of the form

P (x1, . . . , xn) = 0,

with P ∈ Z[x1, . . . , xn], seeking only integer solutions
for x1, . . . , xn.

Diophantus of Alexandria, a Greek mathematician of the
3rd century, was one of the first to investigate such equa-
tions.

For this reason, seeking integer solutions of polynomials
in Z[x1, . . . , xn] is referred to as solving Diophantine
equations .
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This problem is not as simple as it looks. The equation

2x− 3y − 1 = 0

obviously has the solution x = 2, y = 1, and more gener-
ally x = −1 + 3a, y = −1 + 2a, for any integer a ∈ Z.

The equation
x2 + y2 − z2 = 0

has the solution x = 3, y = 4, z = 5, since 32 + 42 =
9 + 16 = 25 = 52.

More generally, the reader should check that

x = t2 − 1, y = 2t, z = t2 + 1

is a solution for all t ∈ Z.

The equation

x3 + y3 + z3 − 29 = 0

has the solution x = 3, y = 1, z = 1.
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What about the equation

x3 + y3 + z3 − 30 = 0?

Amazingly, the only known integer solution is

(x, y, z) = (283059965, 2218888517, 2220422932),

discovered in 1999 by E. Pine, K. Yarbrough, W. Tar-
rant, and M. Beck, following an approach suggested by
N. Elkies.

And what about solutions of the equation

x3 + y3 + z3 − 33 = 0?

Well, nobody knows whether this equation is solvable in
integers!
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In 1900, at the International Congress of Mathematicians
held in Paris, the famous mathematician David Hilbert
presented a list of ten open mathematical problems.

Soon after, Hilbert published a list of 23 problems. The
tenth problem is this:

Hilbert’s tenth problem (H10)

Find an algorithm that solves the following problem:

Given as input a polynomial P ∈ Z[x1, . . . , xn] with inte-
ger coefficients, return YES or NO, according to whether
there exist integers a1, . . . , an ∈ Z so that P (a1, . . . , an) =
0; that is, the Diophantine equation P (x1, . . . , xn) = 0
has a solution.

It is important to note that at the time Hilbert proposed
his tenth problem, a rigorous mathematical definition of
the notion of algorithm did not exist.
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In fact, the machinery needed to even define the notion
of algorithm did not exist.

It is only around 1930 that precise definitions of the notion
of computability due to Turing, Church, and Kleene, were
formulated, and soon after shown to be all equivalent.

So to be precise, the above statement of Hilbert’s tenth
should say: find a RAM program (or equivalently a Tur-
ing machine) that solves the following problem: ...

In 1970, the following somewhat surprising resolution of
Hilbert’s tenth problem was reached:
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Theorem (Davis-Putnam-Robinson-Matiyasevich)

Hilbert’s thenth problem is undecidable; that is, there
is no algorithm for solving Hilbert’s tenth problem.

Even though Hilbert’s tenth problem turned out to have
a negative solution, the knowledge gained in developing
the methods to prove this result is very significant.

What was revealed is that polynomials have considerable
expressive powers.
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10.2 Diophantine Sets and Listable Sets

We begin by showing that if we can prove that the version
of Hilbert’s tenth problem with solutions restricted to
belong to N is undecidable, then Hilbert’s tenth problem
(with solutions in Z is undecidable).

Proposition 10.1. If we had an algorithm for solving
Hilbert’s tenth problem (with solutions in Z), then we
would have an algorithm for solving Hilbert’s tenth
problem with solutions restricted to belong to N (that
is, nonnegative integers).

In fact, the Davis-Putnam-Robinson-Matiyasevich theo-
rem establishes the undecidability of the version of Hilbert’s
tenth problem restricted to solutions in N.

From now on, we restrict our attention to this version
of Hilbert’s tenth problem .
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A key idea is to use Diophantine equations with param-
eters, to define sets of numbers.

For example, consider the polynomial

P1(a, y, z) = (y + 2)(z + 2)− a.

For a ∈ N fixed, the equation

a = (y + 2)(z + 2)

has a solution with y, z ∈ N iff a is composite.

If we now consider the polynomial

P2(a, y, z) = y(2z + 3)− a,

for a ∈ N fixed, the equation

a = y(2z + 3)

has a solution with y, z ∈ N iff a is not a power of 2.
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For a slightly more complicated example, consider the
polynomial

P3(a, y) = 3y + 1− a2.

We leave it as an exercise to show that the natural num-
bers a that satisfy the equation

a2 = 3y + 1

are of the form a = 3k + 1 or a = 3k + 2, for any k ∈ N.

In the first case, if we let S1 be the set of composite
natural numbers, then we can write

S1 = {a ∈ N | (∃y, z)((y + 2)(z + 2)− a = 0)},

where it is understood that the existentially quantified
variables y, z take their values in N.
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In the second case, if we let S2 be the set of natural
numbers that are not powers of 2, then we can write

S2 = {a ∈ N | (∃y, z)(y(2z + 3)− a = 0)}.

In the third case, if we let S3 be the set of natural numbers
that are congruent to 1 or 2 modulo 3, then we can write

S3 = {a ∈ N | (∃y)(3y + 1− a2 = 0)}.

A more explicit Diophantine definition for S3 is

S3 = {a ∈ N | (∃y)((a− 3y − 1)(a− 3y − 2) = 0)}.

The natural generalization is as follows.
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Definition 10.2. A set S ⊆ N of natural numbers
is Diophantine (or Diophantine definable) if there is
a polynomial P (a, x1, . . . , xn) ∈ Z[a, x1, . . . , xn], with
n ≥ 01 such that

S = {a ∈ N | (∃x1, . . . , xn)(P (a, x1, . . . , xn) = 0)},

where it is understood that the existentially quantified
variables x1, . . . , xn take their values in N.

At first glance it is not obvious how to “convert” a con-
junction of Diophantine definitions into a single Diophan-
tine definition, but we can do this using the following
trick: given any finite number of Diophantine equations
in the variables x1, . . . , xn,

P1 = 0, P2 = 0, . . . , Pm = 0, (∗)

observe that (∗) has a solution (a1, . . . , an), which means
that Pi(a1, . . . , an) = 0 for i = 1, . . . ,m, iff the single
equation

P 2
1 + P 2

2 + · · · + P 2
m = 0 (∗∗)

also has the solution (a1, . . . , an).

1We have to allow n = 0. Otherwise singleton sets would not be Diophantine.
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How extensive is the family of Diophantine sets?

The remarkable fact proved by Davis-Putnam-Robinson-
Matiyasevich is that they coincide with the listable sets
(the recursively enumerable sets). This is a highly non-
trivial result.

The easy direction is the following result.

Proposition 10.2. Every Diophantine set is listable
(recursively enumerable).

The main theorem of the theory of Diophantine sets is
the following deep result.

Theorem 10.3. (Davis-Putnam-Robinson-Matiyasevich,
1970) Every listable subset of N is Diophantine.

Theorem 10.3 is often referred to as the DPRM theorem.
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As noted by Martin Davis, although the proof is certainly
long and nontrivial, it only uses elementary facts of num-
ber theory, nothing more sophisticated than the Chinese
remainder theorem.

Nevetherless, the proof is a tour de force.

Using some results from the theory of computation it is
now easy to deduce that Hilbert’s tenth problem is unde-
cidable.

To achieve this, recall that there are listable sets that are
not computable.

For example, it is shown in Section 8.3 that
K = {x ∈ N | ϕx(x) is defined} is listable but not com-
putable.
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SinceK is listable, by Theorem 10.3, it is defined by some
Diophantine equation

P (a, x1, . . . , xn) = 0,

which means that

K = {a ∈ N | (∃x1 . . . , xn)(P (a, x1, . . . , xn) = 0)}.

We have the following strong form of the undecidability
of Hilbert’s tenth problem, in the sense that it shows that
Hilbert’s tenth problem is already undecidable for a fixed
Diophantine equation in one parameter.

Theorem 10.4. There is no algorithm which takes as
input the polynomial P (a, x1, . . . , xn) defining K and
any natural number a ∈ N and decides whether

P (a, x1, . . . , xn) = 0.

Consequently, Hilbert’s tenth problem is undecidable.

It is an open problem whether Hilbert’s tenth problem
is undecidable if we allow rational solutions (that is,
x1, . . . , xn ∈ Q).
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10.3 Some Applications of the DPRM Theorem

The first application of the DRPM theorem is a particu-
larly striking way of defining the listable subsets of N as
the nonnegative ranges of polynomials with integer coef-
ficients.

This result is due to Hilary Putnam.

Theorem 10.5.For every listable subset S of N, there
is some polynomial Q(x, x1, . . . , xn) with integer coef-
ficients such that

S = {Q(a, b1, . . . , bn) | Q(a, b1, . . . , bn) ∈ N,

a, b1, . . . , bn ∈ N}.

Proof idea. By the DPRM theorem (Theorem 10.3), there
is some polynomial P (x, x1, . . . , xn) with integer coeffi-
cients such that

S = {a ∈ N | (∃x1, . . . , xn)(P (a, x1, . . . , xn) = 0)}.
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Let Q(x, x1, . . . , xn) be given by

Q(x, x1, . . . , xn) = (x + 1)(1− P 2(x, x1, . . . , xn))− 1.

We claim that Q satisfies the statement of the theorem.

Remark: It should be noted that in general, the poly-
nomials Q arising in Theorem 10.5 may take on negative
integer values, and to obtain all listable sets, we must
restrict ourself to their nonnegative range.

As an example, the set S3 of natural numbers that are
congruent to 1 or 2 modulo 3 is given by

S3 = {a ∈ N | (∃y)(3y + 1− a2 = 0)}.

so by Theorem 10.5, S3 is the nonnegative range of the
polynomial

Q(x, y) = (x + 1)(1− (3y + 1− x2)2))− 1

= −(x + 1)((3y − x2)2 + 2(3y − x2)))− 1

= (x + 1)(x2 − 3y)(2− (x2 − 3y))− 1.
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Observe that Q(x, y) takes on negative values. For ex-
ample, Q(0, 0) = −1.

Also, in order for Q(x, y) to be nonnegative,
(x2 − 3y)(2 − (x2 − 3y)) must be positive, but this can
only happen if x2 − 3y = 1, that is, x2 = 3y + 1, which
is the original equation defining S3.

There is no miracle. The nonnegativity ofQ(x, x1, . . . , xn)
must subsume the solvability of the equation
P (x, x1, . . . , xn) = 0.

A particularly interesting listable set is the set of primes.

By Theorem 10.5, in theory, the set of primes is the pos-
itive range of some polynomial with integer coefficients.

Remarkably, some explicit polynomials have been found.

This is a nontrivial task. In particular, the process in-
volves showing that the exponential function is definable,
which was the stumbling block of the completion of the
DPRM theorem for many years.
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To give the reader an idea of how the proof begins, observe
by the Bezout identity, if p = s+1 and q = s!, then we can
assert that p and q are relatively prime (gcd(p, q) = 1)
as the fact that the Diophantine equation

ap− bq = 1

is satisfied for some a, b ∈ N.

Then, it is not hard to see that p ∈ N is prime iff the
following set of equations has a solution for a, b, s, r, q ∈
N:

p = s + 1

p = r + 2

q = s!

ap− bq = 1.

The problem with the above is that the equation q = s!
is not Diophantine.
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The next step is to show that the factorial function is
Diophantine, and this involves a lot of work.

One way to proceed is to show that the above system is
equivalent to a system allowing the use of the exponential
function.

The final step is to show that the exponential function
can be eliminated in favor of polynomial equations.

Here is a polynomial of total degree 25 in 26 variables
(due to J. Jones, D. Sato, H. Wada, D. Wiens) which
produces the primes as its positive range:



570 CHAPTER 10. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

(k + 2)
[
1− ([wz + h + j − q]2

+ [(gk + 2g + k + 1)(h + j) + h− z]2

+ [16(k + 1)3(k + 2)(n + 1)2 + 1− f 2]2

+ [2n + p + q + z − e]2 + [e3(e + 2)(a + 1)2 + 1− o2]2

+ [(a2 − 1)y2 + 1− x2]2 + [16r2y4(a2 − 1) + 1− u2]2

+ [((a + u2(u2 − a))2 − 1)(n + 4dy)2 + 1− (x + cu)2]2

+ [(a2 − 1)l2 + 1−m2]2

+ [ai + k + 1− l − i]2 + [n + l + v − y]2

+ [p + l(a− n− 1) + b(2an + 2a− n2 − 2n− 2)−m]2

+ [q + y(a− p− 1) + s(2ap + 2a− p2 − 2p− 2)− x]2

+ [z + pl(a− p) + t(2ap− p2 − 1)− pm]2)
]
.

Around 2004, Nachi Gupta, an undergraduate student at
Penn, and I, tried to produce the prime 2 as one of the
values of the positive range of the above polynomial.

It turns out that this leads to values of the variables that
are so large that we never succeeded!


