2.6 Finite State Automata With Output: Transducers

So far, we have only considered automata that recognize languages, i.e., automata that do not produce any output on any input (except “accept” or “reject”).

It is interesting and useful to consider input/output finite state machines. Such automata are called transducers. They compute functions or relations. First, we define a deterministic kind of transducer.

Definition 2.8. A *general sequential machine (gsm)* is a sextuple \(M = (Q, \Sigma, \Delta, \delta, \lambda, q_0) \), where

1. \(Q \) is a finite set of *states*,
2. \(\Sigma \) is a finite *input alphabet*,
3. \(\Delta \) is a finite *output alphabet*,
4. \(\delta: Q \times \Sigma \rightarrow Q \) is the *transition function*,
5. \(\lambda: Q \times \Sigma \rightarrow \Delta^* \) is the *output function* and
6. \(q_0 \) is the *initial* (or *start*) state.
If $\lambda(p, a) \neq \epsilon$, for all $p \in Q$ and all $a \in \Sigma$, then M is **nonerasing**. If $\lambda(p, a) \in \Delta$ for all $p \in Q$ and all $a \in \Sigma$, we say that M is a *complete sequential machine (csm)*.

In order to define how a gsm works, we extend the transition and the output functions. We define $\delta^* : Q \times \Sigma^* \rightarrow Q$ and $\lambda^* : Q \times \Sigma^* \rightarrow \Delta^*$ recursively as follows: For all $p \in Q$, all $u \in \Sigma^*$ and all $a \in \Sigma$

\[
\begin{align*}
\delta^*(p, \epsilon) &= p \\
\delta^*(p, ua) &= \delta(\delta^*(p, u), a) \\
\lambda^*(p, \epsilon) &= \epsilon \\
\lambda^*(p, ua) &= \lambda^*(p, u)\lambda(\delta^*(p, u), a).
\end{align*}
\]
For any $w \in \Sigma^*$, we let
\[M(w) = \lambda^*(q_0, w) \]
and for any $L \subseteq \Sigma^*$ and $L' \subseteq \Delta^*$, let
\[M(L) = \{ \lambda^*(q_0, w) \mid w \in L \} \]
and
\[M^{-1}(L') = \{ w \in \Sigma^* \mid \lambda^*(q_0, w) \in L' \}. \]

Note that if M is a csm, then $|M(w)| = |w|$ for all $w \in \Sigma^*$. Also, a homomorphism is a special kind of gsm—it can be realized by a gsm with one state.

We can use gsm’s and csm’s to compute certain kinds of functions.

Definition 2.9. A function $f : \Sigma^* \rightarrow \Delta^*$ is a gsm (resp. csm) mapping iff there is a gsm (resp. csm) M so that $M(w) = f(w)$, for all $w \in \Sigma^*$.
Remark: Ginsburg and Rose (1966) characterized gsm mappings as follows:

A function \(f : \Sigma^* \to \Delta^* \) is a gsm mapping iff

(a) \(f \) preserves prefixes, i.e., \(f(x) \) is a prefix of \(f(xy) \);

(b) There is an integer, \(m \), such that for all \(w \in \Sigma^* \) and all \(a \in \Sigma \), we have \(|f(wa)| - |f(w)| \leq m \);

(c) \(f(\epsilon) = \epsilon \);

(d) For every regular language, \(R \subseteq \Delta^* \), the language \(f^{-1}(R) = \{ w \in \Sigma^* \mid f(w) \in R \} \) is regular.

A function \(f : \Sigma^* \to \Delta^* \) is a csm mapping iff \(f \) satisfies (a) and (d), and for all \(w \in \Sigma^* \), \(|f(w)| = |w| \).
The following proposition is left as a homework problem.

Proposition 2.1. *The family of regular languages (over an alphabet Σ) is closed under both gsm and inverse gsm mappings.*

We can generalize the gsm model so that

(1) the device is nondeterministic,

(2) the device has a set of accepting states,

(3) transitions are allowed to occur without new input being processed,

(4) transitions are defined for input strings instead of individual letters.

Here is the definition of such a model, the *a-transducer*. A much more powerful model of transducer will be investigated later: the *Turing machine*.
Definition 2.10. An a-transducer (or nondeterministic sequential transducer with accepting states) is a sextuple $M = (K, \Sigma, \Delta, \lambda, q_0, F)$, where

1. K is a finite set of states,
2. Σ is a finite input alphabet,
3. Δ is a finite output alphabet,
4. $q_0 \in K$ is the start (or initial) state,
5. $F \subseteq K$ is the set of accepting (of final) states and
6. $\lambda \subseteq K \times \Sigma^* \times \Delta^* \times K$ is a finite set of quadruples called the transition function of M.

If $\lambda \subseteq K \times \Sigma^* \times \Delta^+ \times K$, then M is ϵ-free.

Clearly, a gsm is a special kind of a-transducer.

An a-transducer defines a binary relation between Σ^* and Δ^*, or equivalently, a function $M : \Sigma^* \rightarrow 2^{\Delta^*}$.
We can explain what this function is by describing how an a-transducer makes a sequence of moves from configurations to configurations.

The current configuration of an a-transducer is described by a triple

$$(p, u, v) \in K \times \Sigma^* \times \Delta^*,$$

where p is the current state, u is the remaining input, and v is some output produced so far.

We define the binary relation \vdash_M on $K \times \Sigma^* \times \Delta^*$ as follows: For all $p, q \in K, u, \alpha \in \Sigma^*, \beta, v \in \Delta^*$, if $(p, u, v, q) \in \lambda$, then

$$(p, u\alpha, \beta) \vdash_M (q, \alpha, \beta v).$$

Let \vdash^*_M be the transitive and reflexive closure of \vdash_M.
The function $M : \Sigma^* \to 2^{\Delta^*}$ is defined such that for every $w \in \Sigma^*$,

$$M(w) = \{y \in \Delta^* \mid (q_0, w, \epsilon) \vdash^*_M (f, \epsilon, y), \; f \in F\}.$$

For any language $L \subseteq \Sigma^*$ let

$$M(L) = \bigcup_{w \in L} M(w).$$

For any $y \in \Delta^*$, let

$$M^{-1}(y) = \{w \in \Sigma^* \mid y \in M(w)\}$$

and for any language $L' \subseteq \Delta^*$, let

$$M^{-1}(L') = \bigcup_{y \in L'} M^{-1}(y).$$
Remark: Notice that if $w \in M^{-1}(L')$, then there exists some $y \in L'$ such that $w \in M^{-1}(y)$, i.e., $y \in M(w)$. This does not imply that $M(w) \subseteq L'$, only that $M(w) \cap L' \neq \emptyset$.

One should realize that for any $L' \subseteq \Delta^*$ and any α-transducer, M, there is some α-transducer, M', (from Δ^* to 2^{Σ^*}) so that $M'(L') = M^{-1}(L')$.

The following proposition is left as a homework problem:

Proposition 2.2. The family of regular languages (over an alphabet Σ) is closed under both α-transductions and inverse α-transductions.
2.7 An Application of NFA’s: Text Search

A common problem in the age of the Web (and online text repositories) is the following:

Given a set of words, called the *keywords*, find all the documents that contain one (or all) of those words.

Search engines are a popular example of this process. Search engines use *inverted indexes* (for each word appearing on the Web, a list of all the places where that word occurs is stored).

However, there are applications that are unsuited for inverted indexes, but are good for automaton-based techniques.

Some text-processing programs, such as advanced forms of the UNIX *grep* command (such as *egrep* or *fgrep*) are based on automaton-based techniques.

The characteristics that make an application suitable for searches that use automata are:
(1) The repository on which the search is conducted is rapidly changing.

(2) The documents to be searched cannot be catalogued. For example, Amazon.com creates pages “on the fly” in response to queries.

We can use an NFA to find occurrences of a set of keywords in a text. This NFA signals by entering a final state that it has seen one of the keywords. The form of such an NFA is special.

(1) There is a start state, q_0, with a transition to itself on every input symbol from the alphabet, Σ.

(2) For each keyword, $w = a_1 \cdots a_k$, there are k states, $q_1^{(w)}, \ldots, q_k^{(w)}$, and there is a transition from q_0 to $q_1^{(w)}$ on input a_1, a transition from $q_1^{(w)}$ to $q_2^{(w)}$ on input a_2, and so on, until a transition from $q_{k-1}^{(w)}$ to $q_k^{(w)}$ on input a_k. The state $q_k^{(w)}$ is an accepting state and indicates that the keyword $w = a_1 \cdots a_k$ has been found.

The NFA constructed above can then be converted to a DFA using the subset construction.
Here is an example where $\Sigma = \{a, b\}$ and the set of keywords is

$$\{aba, \ ab, \ ba\}.$$

Applying the subset construction to the NFA, we obtain the DFA whose transition table is:
The final states are: 3, 4, 5.

Figure 2.10: DFA for the keywords aba, ab, ba.
The good news news is that, due to the very special structure of the NFA, the number of states of the corresponding DFA is *at most* the number of states of the original NFA!

We find that the states of the DFA are (check it yourself!):

1. The set \(\{ q_0 \} \), associated with the start state \(q_0 \) of the NFA.

2. For any state \(p \neq q_0 \) of the NFA reached from \(q_0 \) along a path whose symbols are \(u = a_1 \cdots a_m \), the set consisting of

 (a) \(q_0 \)

 (b) \(p \)

 (c) The set of all states \(q \) of the NFA reachable from \(q_0 \) by following a path whose symbols form a nonempty suffix of \(u \), i.e., a string of the form

 \(a_j a_{j+1} \cdots a_m \).

As a consequence, we get an efficient (w.r.t. time and space) method to recognize a set of keywords. In fact, this DFA recognizes leftmost occurrences of keywords in a text (we can stop as soon as we enter a final state).
2.8 Directed Graphs and Paths

It is often useful to view DFA’s and NFA’s as labeled directed graphs.

Definition 2.11. A *directed graph* is a quadruple $G = (V, E, s, t)$, where V is a set of *vertices, or nodes*, E is a set of *edges, or arcs*, and $s, t : E \to V$ are two functions, s being called the *source* function, and t the *target* function. Given an edge $e \in E$, we also call $s(e)$ the *origin* (or *source*) of e, and $t(e)$ the *endpoint* (or *target*) of e.

Remark: the functions s, t need not be injective or surjective. Thus, we allow “isolated vertices.”
Example: Let G be the directed graph defined such that

$$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\},$$

$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\},$$ and

$$s(e_1) = v_1, \quad s(e_2) = v_2, \quad s(e_3) = v_3, \quad s(e_4) = v_4,$$

$$s(e_5) = v_2, \quad s(e_6) = v_5, \quad s(e_7) = v_5, \quad s(e_8) = v_5,$$

$$t(e_1) = v_2, \quad t(e_2) = v_3, \quad t(e_3) = v_4, \quad t(e_4) = v_2,$$

$$t(e_5) = v_5, \quad t(e_6) = v_5, \quad t(e_7) = v_6, \quad t(e_8) = v_6.$$

Such a graph can be represented by the following diagram:
In drawing directed graphs, we will usually omit edge names (the e_i), and sometimes even the node names (the v_j).

We now define paths in a directed graph.
Definition 2.12. Given a directed graph \(G = (V, E, s, t) \), for any two nodes \(u, v \in V \), a path from \(u \) to \(v \) is a triple \(\pi = (u, e_1 \ldots e_n, v) \), where \(e_1 \ldots e_n \) is a string (sequence) of edges in \(E \) such that, \(s(e_1) = u \), \(t(e_n) = v \), and \(t(e_i) = s(e_{i+1}) \), for all \(i \) such that \(1 \leq i \leq n - 1 \). When \(n = 0 \), we must have \(u = v \), and the path \((u, \epsilon, u)\) is called the null path from \(u \) to \(u \). The number \(n \) is the length of the path. We also call \(u \) the source (or origin) of the path, and \(v \) the target (or endpoint) of the path. When there is a nonnull path \(\pi \) from \(u \) to \(v \), we say that \(u \) and \(v \) are connected.

Remark: In a path \(\pi = (u, e_1 \ldots e_n, v) \), the expression \(e_1 \ldots e_n \) is a sequence, and thus, the \(e_i \) are not necessarily distinct.
For example, the following are paths:

\[\pi_1 = (v_1, e_1e_5e_7, v_6), \]

\[\pi_2 = (v_2, e_2e_3e_4e_2e_3e_4e_2e_3e_4, v_2), \]

and

\[\pi_3 = (v_1, e_1e_2e_3e_4e_2e_3e_4e_5e_6e_6e_8, v_6). \]

Clearly, \(\pi_2 \) and \(\pi_3 \) are of a different nature from \(\pi_1 \). Indeed, they contain cycles. This is formalized as follows.
Definition 2.13. Given a directed graph \(G = (V, E, s, t) \), for any node \(u \in V \) a cycle (or loop) through \(u \) is a nonnull path of the form \(\pi = (u, e_1 \ldots e_n, u) \) (equivalently, \(t(e_n) = s(e_1) \)). More generally, a nonnull path \(\pi = (u, e_1 \ldots e_n, v) \) contains a cycle iff for some \(i, j \), with \(1 \leq i \leq j \leq n \), \(t(e_j) = s(e_i) \). In this case, letting \(w = t(e_j) = s(e_i) \), the path \((w, e_i \ldots e_j, w)\) is a cycle through \(w \). A path \(\pi \) is acyclic iff it does not contain any cycle. Note that each null path \((u, \epsilon, u)\) is acyclic.

Obviously, a cycle \(\pi = (u, e_1 \ldots e_n, u) \) through \(u \) is also a cycle through every node \(t(e_i) \). Also, a path \(\pi \) may contain several different cycles.

Paths can be concatenated as follows.
Definition 2.14. Given a directed graph \(G = (V, E, s, t) \), two paths \(\pi_1 = (u, e_1 \ldots e_m, v) \) and \(\pi_2 = (u', e'_1 \ldots e'_n, v') \) can be \textit{concatenated} provided that \(v = u' \), in which case their \textit{concatenation} is the path

\[
\pi_1 \pi_2 = (u, e_1 \ldots e_m e'_1 \ldots e'_n, v').
\]

It is immediately verified that the concatenation of paths is associative, and that the concatenation of the path \(\pi = (u, e_1 \ldots e_m, v) \) with the null path \((u, \epsilon, u)\) or with the null path \((v, \epsilon, v)\) is the path \(\pi \) itself.

The following fact, although almost trivial, is used all the time, and is worth stating in detail.

Lemma 2.3. \textit{Given a directed graph} \(G = (V, E, s, t) \), \textit{if the set of nodes} \(V \) \textit{contains} \(m \geq 1 \) \textit{nodes, then every path} \(\pi \) \textit{of length at least} \(m \) \textit{contains some cycle}.
A consequence of lemma 2.3 is that in a finite graph with m nodes, given any two nodes $u, v \in V$, in order to find out whether there is a path from u to v, it is enough to consider paths of length $\leq m - 1$.

Indeed, if there is path between u and v, then there is some path π of minimal length (not necessarily unique, but this doesn’t matter).

If this minimal path has length at least m, then by the lemma, it contains a cycle.

However, by deleting this cycle from the path π, we get an even shorter path from u to v, contradicting the minimality of π.

We now turn to labeled graphs.
2.9 Labeled Graphs and Automata

In fact, we only need edge-labeled graphs.

Definition 2.15. A labeled directed graph is a tuple $G = (V, E, L, s, t, \lambda)$, where V is a set of vertices, or nodes, E is a set of edges, or arcs, L is a set of labels, $s, t: E \rightarrow V$ are two functions, s being called the source function, and t the target function, and $\lambda: E \rightarrow L$ is the labeling function. Given an edge $e \in E$, we also call $s(e)$ the origin (or source) of e, $t(e)$ the endpoint (or target) of e, and $\lambda(e)$ the label of e.

Note that the function λ need not be injective or surjective. Thus, distinct edges may have the same label.
Example: Let G be the directed graph defined such that

$E = \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}$,

$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$, $L = \{a, b\}$,

and

$s(e_1) = v_1$, $s(e_2) = v_2$, $s(e_3) = v_3$, $s(e_4) = v_4$, $s(e_5) = v_2$, $s(e_6) = v_5$, $s(e_7) = v_5$, $s(e_8) = v_5$,

t(e_1) = v_2$, $t(e_2) = v_3$, $t(e_3) = v_4$, $t(e_4) = v_2$, $t(e_5) = v_5$, $t(e_6) = v_5$, $t(e_7) = v_6$, $t(e_8) = v_6$,

$\lambda(e_1) = a$, $\lambda(e_2) = b$, $\lambda(e_3) = a$, $\lambda(e_4) = a$, $\lambda(e_5) = b$, $\lambda(e_6) = a$, $\lambda(e_7) = a$, $\lambda(e_8) = b$.

Such a labeled graph can be represented by the following diagram:
In drawing labeled graphs, we will usually omit edge names (the e_i), and sometimes even the node names (the v_j).

Paths, cycles, and concatenation of paths are defined just as before (that is, we ignore the labels). However, we can now define the *spelling* of a path.
Definition 2.16. Given a labeled directed graph $G = (V, E, L, s, t, \lambda)$ for any two nodes $u, v \in V$, for any path $\pi = (u, e_1 \ldots e_n, v)$, the *spelling of the path* π is the string of labels

$$\lambda(e_1) \ldots \lambda(e_n).$$

When $n = 0$, the spelling of the null path (u, ϵ, u) is the null string ϵ.

For example, the spelling of the path

$$\pi_3 = (v_1, e_1 e_2 e_3 e_4 e_2 e_3 e_4 e_5 e_6 e_6 e_8, v_6)$$

is

$$abaabaabaab.$$

Every DFA and every NFA can be viewed as a labeled graph, in such a way that the set of spellings of paths from the start state to some final state is the language accepted by the automaton in question.
Given a DFA $D = (Q, \Sigma, \delta, q_0, F)$, where
$\delta: Q \times \Sigma \rightarrow Q$, we associate the labeled directed graph
$G_D = (V, E, L, s, t, \lambda)$ defined as follows:

$$
V = Q, \quad E = \{(p, a, q) \mid q = \delta(p, a), p, q \in Q, a \in \Sigma\},
$$

$$
L = \Sigma, \quad s((p, a, q)) = p, \quad t((p, a, q)) = q,
$$

and $\lambda((p, a, q)) = a$.

Such labeled graphs have a special structure that can easily be characterized.

It is easily shown that a string $w \in \Sigma^*$ is in the language
$L(D) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \in F\}$ iff w is the spelling of
some path in G_D from q_0 to some final state.
Similarly, given an NFA $N = (Q, \Sigma, \delta, q_0, F)$, where
$\delta: Q \times (\Sigma \cup \{\epsilon\}) \rightarrow 2^Q$, we associate the labeled directed
graph $G_N = (V, E, L, s, t, \lambda)$ defined as follows:

$V = Q$

$E = \{(p, a, q) \mid q \in \delta(p, a), \; p, q \in Q, \; a \in \Sigma \cup \{\epsilon\}\}$,

$L = \Sigma \cup \{\epsilon\}$, $s((p, a, q)) = p$, $t((p, a, q)) = q$,

$\lambda((p, a, q)) = a$.

Remark: When N has no ϵ-transitions, we can let $L = \Sigma$.

Such labeled graphs have also a special structure that can
easily be characterized.

Again, a string $w \in \Sigma^*$ is in the language
$L(N) = \{w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset\}$ iff w is the spelling
of some path in G_N from q_0 to some final state.
2.10 The Closure Definition of the Regular Languages

Let $\Sigma = \{a_1, \ldots, a_m\}$ be an alphabet. We define the family \((R(\Sigma)_n) \) of sets of languages as follows:

\[
R(\Sigma)_0 = \{\{a_1\}, \ldots, \{a_m\}, \emptyset, \{\epsilon\}\},
\]
\[
R(\Sigma)_{n+1} = R(\Sigma)_n \cup \{L_1 \cup L_2, L_1L_2, L^* | L_1, L_2, L \in R(\Sigma)_n\}.
\]

Then, we define $R(\Sigma)$ as

\[
R(\Sigma) = \bigcup_{n \geq 0} R(\Sigma)_n.
\]

For example, if $\Sigma = \{a, b\}$, we have

\[
R(\Sigma)_1 = \{\{a\}, \{b\}, \emptyset, \{\epsilon\}, \{a, b\}, \{a, \epsilon\}, \{b, \epsilon\}, \{ab\}, \{ba\}, \{aa\}, \{bb\}, \{a\}^*, \{b\}^*\}.
\]

Definition 2.17. Regular languages, Version 2 = $R(\Sigma)$.

Consider the following properties of a family of languages, $\mathcal{L} \subseteq 2^{\Sigma^*}$:

1. $\{a_1\}, \ldots, \{a_m\}, \emptyset, \{\epsilon\} \in \mathcal{L}$

2(a) If $L_1 \in \mathcal{L}$ and $L_2 \in \mathcal{L}$, then $L_1 \cup L_2 \in \mathcal{L}$

2(b) If $L_1 \in \mathcal{L}$ and $L_2 \in \mathcal{L}$, then $L_1L_2 \in \mathcal{L}$

2(c) If $L \in \mathcal{L}$, then $L^* \in \mathcal{L}$.

If properties 2(a), 2(b) and 2(c) hold, we say that the family, \mathcal{L}, is \textit{closed under union, concatenation and Kleene *}.

\textbf{Proposition 2.4.} The family $R(\Sigma)$ is the smallest family of languages which contains the (atomic) languages $\{a_1\}, \ldots, \{a_m\}, \emptyset, \{\epsilon\}$, and is closed under union, concatenation, and Kleene *.
Proof sketch. To prove that $R(\Sigma)$ satisfies properties (1), 2(a), 2(b) and 2(c), use the fact that $R(\Sigma)_n \subseteq R(\Sigma)_{n+1}$ for all $n \geq 0$.

To prove that for any family, L, if L satisfies properties (1), 2(a), 2(b) and 2(c), then $R(\Sigma) \subseteq L$, prove that $R(\Sigma)_n \subseteq L$ by induction on n.

Note: a given language L may be built up in different ways. For example,

$$\{a, b\}^* = (\{a\}^*\{b\}^*)^*.$$
2.11 Regular Expressions

Given an alphabet \(\Sigma = \{a_1, \ldots, a_m\} \), consider the new alphabet
\[
\Delta = \Sigma \cup \{+, \cdot, *, (,), \emptyset, \epsilon\}.
\]
We define the family \((\mathcal{R}(\Sigma)_n)\) of languages over \(\Delta\) as follows:

\[
\mathcal{R}(\Sigma)_0 = \{a_1, \ldots, a_m, \emptyset, \epsilon\},
\]

\[
\mathcal{R}(\Sigma)_{n+1} = \mathcal{R}(\Sigma)_n \cup \{(R_1 + R_2), (R_1 \cdot R_2), R^* \mid R_1, R_2, R \in \mathcal{R}(\Sigma)_n\}.
\]

Then, we define \(\mathcal{R}(\Sigma)\) as
\[
\mathcal{R}(\Sigma) = \bigcup_{n \geq 0} \mathcal{R}(\Sigma)_n.
\]
For example, if \(\Sigma = \{ a, b \} \), we have

\[
\mathcal{R}(\Sigma)_1 = \{ a, b, \emptyset, \epsilon, \\
(a + b), (b + a), (a + a), (b + b), (a + \epsilon), (\epsilon + a), \\
(b + \epsilon), (\epsilon + b), (a + \emptyset), (\emptyset + a), (b + \emptyset), (\emptyset + b), \\
(\epsilon + \epsilon), (\epsilon + \emptyset), (\emptyset + \epsilon), (\emptyset + \emptyset), \\
(a \cdot b), (b \cdot a), (a \cdot a), (b \cdot b), (a \cdot \epsilon), (\epsilon \cdot a), \\
(b \cdot \epsilon), (\epsilon \cdot b), (\epsilon \cdot \epsilon), (a \cdot \emptyset), (\emptyset \cdot a), \\
(b \cdot \emptyset), (\emptyset \cdot b), (\epsilon \cdot \emptyset), (\emptyset \cdot \epsilon), (\emptyset \cdot \emptyset), \\
a^*, b^*, \epsilon^*, \emptyset^* \}.
\]

Definition 2.18. \(\mathcal{R}(\Sigma) \) is the set of *regular expressions* (over \(\Sigma \)).
Proposition 2.5. The language $\mathcal{R}(\Sigma)$ is the smallest language which contains the symbols a_1, \ldots, a_m, \emptyset, ϵ, from Δ, and such that $(R_1 + R_2)$, $(R_1 \cdot R_2)$, and R^*, also belong to $\mathcal{R}(\Sigma)$, when $R_1, R_2, R \in \mathcal{R}(\Sigma)$.

For simplicity of notation, write

$$(R_1 R_2)$$

instead of

$$(R_1 \cdot R_2).$$

Examples: $R = (a + b)^*$, $S = (a^*b^*)^*$.

$$T = (a + b)^*a (a + b) \cdots (a + b)^n.$$
2.12 Regular Expressions and Regular Languages

Every regular expression \(R \in \mathcal{R}(\Sigma) \) can be viewed as the \textit{name}, or \textit{denotation}, of some language \(L \in R(\Sigma) \). Similarly, every language \(L \in R(\Sigma) \) is the \textit{interpretation} (or \textit{meaning}) of some regular expression \(R \in \mathcal{R}(\Sigma) \).

Think of a regular expression \(R \) as a \textit{program}, and of \(\mathcal{L}(R) \) as the result of the \textit{execution} or \textit{evaluation}, of \(R \) by \(\mathcal{L} \).

This can be made rigorous by defining a function

\[
\mathcal{L}: \mathcal{R}(\Sigma) \to R(\Sigma).
\]
This function is defined recursively:

\[
\begin{align*}
\mathcal{L}[a_i] &= \{a_i\}, \\
\mathcal{L}[\emptyset] &= \emptyset, \\
\mathcal{L}[\epsilon] &= \{\epsilon\}, \\
\mathcal{L}[(R_1 + R_2)] &= \mathcal{L}[R_1] \cup \mathcal{L}[R_2], \\
\mathcal{L}[(R_1R_2)] &= \mathcal{L}[R_1]\mathcal{L}[R_2], \\
\mathcal{L}[R^*] &= \mathcal{L}[R]^*.
\end{align*}
\]

Proposition 2.6. For every regular expression \(R \in \mathcal{R}(\Sigma) \), the language \(\mathcal{L}[R] \) is regular (version 2), i.e. \(\mathcal{L}[R] \in R(\Sigma) \). Conversely, for every regular (version 2) language \(L \in R(\Sigma) \), there is some regular expression \(R \in \mathcal{R}(\Sigma) \) such that \(L = \mathcal{L}[R] \).

Note: the function \(\mathcal{L} \) is not injective.

Example: If \(R = (a + b)^* \), \(S = (a^*b^*)^* \), then

\[
\mathcal{L}[R] = \mathcal{L}[S] = \{a, b\}^*.
\]
For simplicity, we often denote $\mathcal{L}[R]$ as L_R.

Remark. If

$$R = (a + b)^* a \underbrace{(a + b) \cdots (a + b)}_{n},$$

it can be shown that any minimal DFA accepting L_R has 2^{n+1} states.

Yet, both $(a + b)^* a$ and $\underbrace{(a + b) \cdots (a + b)}_{n}$ denote languages that can be accepted by “small” DFA’s (of size 2 and $n + 2$).
Definition 2.19. Two regular expressions \(R, S \in \mathcal{R}(\Sigma) \) are *equivalent*, denoted as \(R \cong S \), iff \(\mathcal{L}[R] = \mathcal{L}[S] \).

It is immediate that \(\cong \) is an equivalence relation.

The relation \(\cong \) satisfies some (nice) identities. For example:

\[
\begin{align*}
((R_1 + R_2) + R_3) &\cong (R_1 + (R_2 + R_3)), \\
((R_1 R_2) R_3) &\cong (R_1 (R_2 R_3)), \\
(R_1 + R_2) &\cong (R_2 + R_1), \\
(R^* R^*) &\cong R^*, \\
R^{**} &\cong R^*.
\end{align*}
\]

There are algorithms to test equivalence of regular expressions, but their complexity is exponential.

It is an *open problem* to prove that the problem cannot be decided in polynomial time.
Proposition 2.7. There is an algorithm, which, given any regular expression \(R \in \mathcal{R}(\Sigma) \), constructs an NFA \(N_R \) accepting \(L_R \), i.e., such that \(L_R = L(N_R) \).

In order to ensure the correctness of the construction as well as to simplify the description of the algorithm it is convenient to assume that our NFA’s satisfy the following conditions:

1. Each NFA has a \textit{single} final state, \(t \), distinct from the start state, \(s \).
2. There are \textit{no incoming transitions} into the the start state, \(s \), and \textit{no outgoing transitions} from the final state, \(t \).
3. Every state has at most two incoming and two outgoing transitions.

Here is the algorithm.
For the base case, either

(a) $R = a_i$, in which case, N_R is the following NFA:

![NFA for a_i](image)

Figure 2.13: NFA for a_i

(b) $R = \epsilon$, in which case, N_R is the following NFA:

![NFA for ϵ](image)

Figure 2.14: NFA for ϵ

(c) $R = \emptyset$, in which case, N_R is the following NFA:

![NFA for \emptyset](image)

Figure 2.15: NFA for \emptyset

The recursive clauses are as follows:
(i) If our expression is $(R + S)$, the algorithm is applied recursively to R and S, generating NFA’s N_R and N_S, and then these two NFA’s are combined in parallel as shown in Figure 2.16:

![Figure 2.16: NFA for $(R + S)$](image)

(ii) If our expression is $(R \cdot S)$, the algorithm is applied recursively to R and S, generating NFA’s N_R and N_S, and then these NFA’s are combined sequentially as shown in Figure 2.17 by merging the “old” final state, t_1, of N_R, with the “old” start state, s_2, of N_S:

![Figure 2.17: NFA for $(R \cdot S)$](image)
Note that since there are no incoming transitions into s_2 in N_S, once we enter N_S, there is no way of reentering N_R, and so the construction is correct (it yields the concatenation $L_R L_S$).

(iii) If our expression is R^*, the algorithm is applied recursively to R, generating the NFA N_R. Then we construct the NFA shown in Figure 2.18 by adding an ϵ-transition from the “old” final state, t_1, of N_R to the “old” start state, s_1, of N_R and, as ϵ is not necessarily accepted by N_R, we add an ϵ-transition from s to t:

![Figure 2.18: NFA for R^*](image)

Since there are no outgoing transitions from t_1 in N_R, we can only loop back to s_1 from t_1 using the new ϵ-transition from t_1 to s_1 and so the NFA of Figure 2.18 does accept N_R^*.
As a corollary of this construction, we get

Reg. languages version 2 \subseteq Reg. languages, version 1.

The reader should check that if one constructs the NFA corresponding to the regular expression $(a + b)^*abb$ and then applies the subset construction, one get the following DFA:

![Figure 2.19: A non-minimal DFA for \(\{a, b\}^*\{abb]\)](image-url)
Proposition 2.8. There is an algorithm, which, given any NFA N, constructs a regular expression $R \in \mathcal{R}(\Sigma)$, denoting $L(N)$, i.e., such that $L_R = L(N)$.

As a corollary,

Reg. languages version 1 \subseteq Reg. languages, version 2.

This is the node elimination algorithm.

The general idea is to allow more general labels on the edges of an NFA, namely, regular expressions. Then, such generalized NFA’s are simplified by eliminating nodes one at a time, and readjusting labels.
Preprocessing, phase 1:

If necessary, we need to add a new start state with an ϵ-transition to the old start state, if there are incoming edges into the old start state.

If necessary, we need to add a new (unique) final state with ϵ-transitions from each of the old final states to the new final state, if there is more than one final state or some outgoing edge from any of the old final states.

At the end of this phase, the start state, say s, is a source (no incoming edges), and the final state, say t, is a sink (no outgoing edges).
Preprocessing, phase 2:

We need to “flatten” parallel edges. For any pair of states \((p, q)\) \((p = q \text{ is possible})\), if there are \(k\) edges from \(p\) to \(q\) labeled \(u_1, \ldots, u_k\), then create a single edge labeled with the regular expression

\[u_1 + \cdots + u_k. \]

For any pair of states \((p, q)\) \((p = q \text{ is possible})\) such that there is no edge from \(p\) to \(q\), we put an edge labeled \(\emptyset\).

At the end of this phase, the resulting “generalized NFA” is such that for any pair of states \((p, q)\) \((where \(p = q\ \text{is possible})\), there is a unique edge labeled with some regular expression denoted as \(R_{p,q}\). When \(R_{p,q} = \emptyset\), this really means that there is no edge from \(p\) to \(q\) in the original NFA \(N\).
By interpreting each $R_{p,q}$ as a function call (really, a macro) to the NFA $N_{p,q}$ accepting $L[R_{p,q}]$ (constructed using the previous algorithm), we can verify that the original language $L(N)$ is accepted by this new generalized NFA.

Node elimination only applies if the generalized NFA has at least one node distinct from s and t.

Pick any node r distinct from s and t. For every pair (p, q) where $p \neq r$ and $q \neq r$, replace the label of the edge from p to q as indicated below:
At the end of this step, delete the node r and all edges adjacent to r.

Figure 2.20: Before Eliminating node r

Figure 2.21: After Eliminating node r
Note that \(p = q \) is possible, in which case the triangle is “flat”. It is also possible that \(p = s \) or \(q = t \). Also, this step is performed for all pairs \((p, q) \), which means that both \((p, q)\) and \((q, p)\) are considered (when \(p \neq q \)).

Note that this step only has an effect if there are edges from \(p \) to \(r \) and from \(r \) to \(q \) in the original NFA \(N \). Otherwise, \(r \) can simply be deleted, as well as the edges adjacent to \(r \).

Other simplifications can be made. For example, when \(R_{r,r} = \emptyset \), we can simplify \(R_{p,r}R_{r,r}^*R_{r,q} \) to \(R_{p,r}R_{r,q} \). When \(R_{p,q} = \emptyset \), we have \(R_{p,r}R_{r,r}^*R_{r,q} \).

The order in which the nodes are eliminated is irrelevant, although it affects the size of the final expression.

The algorithm stops when the only remaining nodes are \(s \) and \(t \). Then, the label \(R \) of the edge from \(s \) to \(t \) is a regular expression denoting \(L(N) \).
For example, let

\[L = \{ w \in \Sigma^* \mid w \text{ contains an odd number of a’s or an odd number of b’s} \}. \]

An NFA for \(L \) after the preprocessing phase is:

![Figure 2.22: NFA for L (after preprocessing phase)](image-url)
After eliminating node 2:

Figure 2.23: NFA for L (after eliminating node 2)

After eliminating node 3:

Figure 2.24: NFA for L (after eliminating node 3)
After eliminating node 4:

![NFA Diagram](image)

Figure 2.25: NFA for L (after eliminating node 4)

where

$$T = a + b + (ab + ba)(aa + bb)^*(\epsilon + a + b)$$

and

$$S = aa + bb + (ab + ba)(aa + bb)^*(ab + ba).$$

Finally, after eliminating node 1, we get:

$$R = (aa + bb + (ab + ba)(aa + bb)^*(ab + ba))^* (a + b + (ab + ba)(aa + bb)^*(\epsilon + a + b)).$$
2.14 Applications of Regular Expressions:
Lexical analysis, Finding patterns in text

Regular expressions have several practical applications. The first important application is to *lexical analysis*.

A *lexical analyzer* is the first component of a *compiler*.

The purpose of a lexical analyzer is to scan the source program and break it into atomic components, known as *tokens*, i.e., substrings of consecutive characters that belong together logically.

Examples of tokens are: identifiers, keywords, numbers (in fixed point notation or floating point notation, etc.), arithmetic operators (+, ·, −, ^), comparison operators (<, >, =, <>), assignment operator (:=), etc.

Tokens can be described by regular expressions. For this purpose, it is useful to enrich the syntax of regular expressions, as in UNIX.
For example, the 26 upper case letters of the (roman) alphabet, A, \ldots, Z, can be specified by the expression

$$[A-Z]$$

Similarly, the ten digits, $0, 1, \ldots, 9$, can be specified by the expression

$$[0-9]$$

The regular expression

$$R_1 + R_2 + \cdots + R_k$$

is denoted

$$[R_1 R_2 \cdots R_k]$$

So, the expression

$$[A-Za-z0-9]$$

denotes any letter (upper case or lower case) or digit. This is called an \textit{alphanumeric}.
If we define an identifier as a string beginning with a letter (upper case or lower case) followed by any number of alphanumerics (including none), then we can use the following expression to specify identifiers:

\[[A-Za-z][A-Za-z0-9]^* \]

There are systems, such as *lex* or *flex* that accept as input a list of regular expressions describing the tokens of a programming language and construct a lexical analyzer for these tokens.

Such systems are called *lexical analyzer generators*. Basically, they build a DFA from the set of regular expressions using the algorithms that have been described earlier.

Usually, it is possible associate with every expression some action to be taken when the corresponding token is recognized.
Another application of regular expressions is finding patterns in text.

Using a regular expression, we can specify a “vaguely defined” class of patterns.

Take the example of a street address. Most street addresses end with “Street”, or “Avenue”, or “Road” or “St.”, or “Ave.”, or “Rd.”.

We can design a regular expression that captures the shape of most street addresses and then convert it to a DFA that can be used to search for street addresses in text.

For more on this, see Hopcroft-Motwani and Ullman.
2.15 Summary of Closure Properties of the Regular Languages

The family of regular languages is closed under many operations. In particular, it is closed under the following operations listed below. Some of the closure properties are left as a homework problem.

(1) Union, intersection, relative complement.
(2) Concatenation, Kleene *, Kleene +.
(3) Homomorphisms and inverse homomorphisms.
(4) gsm and inverse gsm mappings, \(a \)-transductions and inverse \(a \)-transductions.

Another useful operation is substitution.

Given any two alphabets \(\Sigma, \Delta \), a substitution is a function, \(\tau: \Sigma \rightarrow 2^{\Delta^*} \), assigning some language, \(\tau(a) \subseteq \Delta^* \), to every symbol \(a \in \Sigma \).
A substitution $\tau : \Sigma \to 2^{\Delta^*}$ is extended to a map $\tau : 2^{\Sigma^*} \to 2^{\Delta^*}$ by first extending τ to strings using the following definition

$$\tau(\epsilon) = \{\epsilon\},$$
$$\tau(ua) = \tau(u)\tau(a),$$

where $u \in \Sigma^*$ and $a \in \Sigma$, and then to languages by letting

$$\tau(L) = \bigcup_{w \in L} \tau(w),$$

for every language $L \subseteq \Sigma^*$.
Observe that a homomorphism is a special kind of substitution.

A substitution is a regular substitution iff $\tau(a)$ is a regular language for every $a \in \Sigma$. The proof of the next proposition is left as a homework problem.

Proposition 2.9. If L is a regular language and τ is a regular substitution, then $\tau(L)$ is also regular. Thus, the family of regular languages is closed under regular substitutions.