Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier Review Session

Released February 19, 2020

Problem 1. (1) Give an NFA with four states (with a single ϵ-transition) accepting $L=$ $\{a a, b b\}^{*}$.
(2) Convert the NFA of question (1) to a DFA.

Problem 2. (1) Given a DFA $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, construct an equivalent DFA $D^{\prime}=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ (i.e. such that $\left.L\left(D^{\prime}\right)=L(D)\right)$ and such that there are no incoming transitions into the start state q_{0}^{\prime} of D^{\prime}.
(2) Prove of disprove (by giving a counter-example) the following statement:

A DFA, D, accepts a finite language iff its underlying directed graph has no cycle.
Problem 3. Given an alphabet Σ, for any language L over Σ, if $L^{R}=\left\{w^{R} \mid w \in L\right\}$ is the reversal language of L, prove that

$$
\begin{aligned}
& \left(L_{1} L_{2}\right)^{R}=L_{2}^{R} L_{1}^{R} ; \\
& \left(L^{*}\right)^{R}=\left(L^{R}\right)^{*} .
\end{aligned}
$$

Problem 4. (1) Let $\Sigma=\{a, b\}$. Give a DFA accepting

$$
L_{1}=\left\{w \in \Sigma^{*} \mid w \text { contains an even number of } a \text { 's }\right\}
$$

(There is one with two states and, by the way, $0=$ zero is even.)
(2) Give a DFA accepting

$$
L_{2}=\left\{w \in \Sigma^{*} \mid w \text { contains a number of } b \text { 's divisible by } 3\right\}
$$

(There is one with three states and the number of b 's is $0,3,6,9, \ldots$..)
(3) Give a DFA accepting $L_{3}=L_{1} \cap L_{2}$.

Problem 5.

Let $\Sigma=\{a, b\}$. Describe a method taking as input any DFA D (over $\{a, b\}$) and testing whether

$$
L(D)=\{a\}^{*} b\{a, b\}^{*}
$$

Hint. Recall that for any two sets, X, Y, we have $X \subseteq Y$ iff $X-Y=\emptyset$.

Problem 6.

Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and assume that Q contains $n \geq 1$ states. Prove that if there is some string $w \in \Sigma^{*}$ such that $w \in L(D)$ and $|w| \geq n$, then there is some string $u \in \Sigma^{*}$ such that $u \in L(D)$ and $|u|<n$.

