Spring 2020 CIS 262

Automata, Computability and Complexity Jean Gallier

Solutions for the First Review Session

February 24, 2020 Solutions

Problem 1. (1) An NFA with a single ϵ -transition accepting $L = \{aa, bb\}^*$ whose transition table

	ϵ	a	b
0	Ø	1	2
1	Ø	3	Ø
2	Ø	Ø	3
3	0	Ø	Ø

is shown below:

Figure 1: NFA for $L = \{aa, bb\}^*$

(2) Convert the NFA of question (a) to a DFA.

When we apply the subset construction, we get:

		a	b
A	{0}	B	C
B	$\{1\}$	D	E
C	$\{2\}$	E	D
D	$\{0, 3\}$	B	C
E	Ø	E	E

The final states are A and D and the start state is A.

Figure 2: DFA for $L = \{aa, bb\}^*$

Problem 2. (1) Given any DFA, $D = (Q, \Sigma, \delta, q_0, F)$, let D' be the DFA, $D' = (Q \cup \{q'_0\}, \Sigma, \delta', q'_0, F')$, where q'_0 is a new state not in Q, with F' = F if $q_0 \notin F$ else $F' = F \cup \{q'_0\}$, and with the transition function δ' defined as follows:

For all $a \in \Sigma$, if $p \in Q$ then

 $\delta'(p,a) = \delta(p,a)$

else

 $\delta'(q'_0, a) = \delta(q_0, a).$

Clearly, there are no incoming transitions into q'_0 and since the transitions from q'_0 are identical to the transitions from q_0 and all the other transitions are the same as in D, we have L(D') = L(D).

(2) It is false that a DFA accepts a finite language iff its contains no underlying cycle. This is because, given any DFA, there must be a transition from every state on every input and as a DFA is finite, every DFA has a cycle! For example, the following DFA over the alphabet $\{a\}$ only accepts ϵ , yet it has a cycle:

Figure 3: DFA for $\{\epsilon\}$

Problem 3. By definition, $L^R = \{w^R \mid w \in L\}$. Recall that it was proved that $(uv)^R = v^R u^R$ and $(w^R)^R = w$,

for all $u, v, w \in \Sigma^*$. We have

$$w \in (L_1 L_2)^R \quad \text{iff} \quad w^R \in L_1 L_2$$

$$\text{iff} \quad (\exists u \in L_1) (\exists v \in L_2) (w^R = uv)$$

$$\text{iff} \quad (\exists u \in L_1) (\exists v \in L_2) (w = v^R u^R)$$

$$\text{iff} \quad (\exists x \in L_1^R) (\exists y \in L_2^R) (w = yx)$$

$$\text{iff} \quad w \in L_2^R L_1^R,$$

which proves that

$$(L_1 L_2)^R = L_2^R L_1^R.$$

We claim that

$$(L^n)^R = (L^R)^n$$
, for all $n \ge 0$.

This is proved by induction. For n = 0, we have

$$(L^0)^R = \{\epsilon\}^R = \{\epsilon\} = (L^R)^0,$$

so the base case holds.

Assume the induction hypothesis holds for any $n \ge 0$. Using $(L_1L_2)^R = L_2^R L_1^R$, we get

$$(L^{n+1})^R = (L^n L)^R = L^R (L^n)^R = L^R (L^R)^n = (L^R)^{n+1},$$

establishing the induction step.

Then, we get

$$(L^*)^R = \left(\bigcup_{n\ge 0} L^n\right)^R = \bigcup_{n\ge 0} (L^n)^R = \bigcup_{n\ge 0} (L^R)^n = (L^R)^*,$$

 \mathbf{SO}

$$(L^*)^R = (L^R)^*,$$

as claimed.

Problem 4. Let $\Sigma = \{a, b\}$.

(1) A DFA accepting

 $L_1 = \{ w \in \Sigma^* \mid w \text{ contains an even number of } a's \}.$

Figure 4: DFA for L_1

(2) A DFA accepting

 $L_2 = \{ w \in \Sigma^* \mid w \text{ contains a number of } b$'s divisible by 3 $\}$.

Figure 5: DFA for L_2

(3) A DFA accepting $L_3 = L_1 \cap L_2$.

The cross-product construction (for intersection) yields:

	a	b
(0, A)	(1,A)	(0, B)
(0,B)	(1,B)	(0, C)
(0, C)	(1,C)	(0, A)
(1, A)	(0, A)	(1, B)
(1,B)	(0,B)	(1, C)
(1, C)	(0,C)	(1, A)

The start state (0, A) is also the only final state.

Problem 5.

Figure 6: DFA for $L_1 \cap L_2$

Let $\Sigma = \{a, b\}$. Describe a method taking as input any DFA D (over $\{a, b\}$) and testing whether

$$L(D) = \{a\}^* b\{a, b\}^*.$$

The regular language, $\{a\}^* b\{a, b\}^*$ is accepted by a two-state DFA, D', with $Q = \{0, 1\}$, start state 0 and final state, 1, and with

$$\delta(0, a) = 0$$

 $\delta(0, b) = 1$
 $\delta(1, a) = 1$
 $\delta(1, b) = 1.$

Figure 7: DFA for $\{a\}^* b\{a, b\}^*$

As
$$L(D) = \{a\}^* b\{a, b\}^* = L(D')$$
 iff $L(D) \subseteq L(D')$ and $L(D') \subseteq L(D)$, from the hint,

$$L(D) = \{a\}^* b\{a, b\}^* = L(D')$$
 iff $L(D) - L(D') = \emptyset$ and $L(D') - L(D) = \emptyset$.

We know that the cross-product constructions for relative complements yields DFA's, D_1 and D_2 , so that $L(D_1) = L(D) - L(D')$ and $L(D_2) = L(D') - L(D)$. Thus, we can test whether $L(D) = \emptyset$ by testing whether $L(D_1) = \emptyset$ and $L(D_2) = \emptyset$. However, this holds iff no final state of D_1 is reachable and no final state of D_2 is reachable, which can be tested by computing the reachable states of D_1 and D_2 using the algorithm described in the notes. The set of final states of D_1 is $F \times \overline{F'}$ and the set of final states of D_2 is $\overline{F} \times F'$. So no state in $F \times \overline{F'}$ should be reachable in D_1 and no state in $\overline{F} \times F'$ should be reachable in D_2 .

Problem 6.

Let $D = (Q, \Sigma, \delta, q_0, F)$ be a DFA and assume that Q contains $n \ge 1$ states. Prove that if there is some string $w \in \Sigma^*$ such that $w \in L(D)$ and $|w| \ge n$, then there is some string $u \in \Sigma^*$ such that $u \in L(D)$ and |u| < n.

Claim. The sequence q_0, q_1, \ldots, q_m of states in the computation from q_0 on input w (with m = |w|) with $q_m \in F$ must contain two identical states $q_h = q_k$, for $0 \le h < k \le n$.

Since $|w| \ge n$, we have $m \ge n$. The sequence

$$q_0, q_1, \ldots, q_n$$

has n + 1 elements, but Q contains n distinct states, so by the pigeonhole principle, two of the sates in the sequence must be identical, say $q_h = q_k$, for $0 \le h < k \le n$.

Consider a string $u \in \Sigma^*$ of minimal length such that $u \in L(D)$.

Assume by contradiction that $|u| \ge n$. Then, by the claim, the sequence q_0, q_1, \ldots, q_m of states in the computation from q_0 on input w (with m = |w|) with $q_m \in F$ must contain two identical states $q_h = q_k$, for $0 \le h < k \le n$. Thus we can write u = xyz, where x is the string that takes us from q_0 to q_h , y is the string that takes us from q_h to $q_k = q_h$, and z is the string that takes us from q_q to q_m , and by construction, $0 < |y| \le n$. Then by skipping the sequence of states from q_h back to $q_k = q_h$, we obtain the sequence

$$q_0, q_1, \ldots, q_h, q_{k+1}, \ldots, q_m$$

with $q_m \in F$, showing that $xz \in L(D)$. But since 0 < |y|, we have

$$|xz| < |xyz| = |w|$$

with $xz \in L(D)$, contradicting the minimality of u. Therefore, |u| < n, as claimed.