Automata, Computability and Complexity Jean Gallier Solutions for the First Review Session

February 24, 2020
Solutions

Problem 1. (1) An NFA with a single ϵ-transition accepting $L=\{a a, b b\}^{*}$ whose transition table

	ϵ	a	b
0	\emptyset	1	2
1	\emptyset	3	\emptyset
2	\emptyset	\emptyset	3
3	0	\emptyset	\emptyset

is shown below:

Figure 1: NFA for $L=\{a a, b b\}^{*}$
(2) Convert the NFA of question (a) to a DFA.

When we apply the subset construction, we get:

		a	b
A	$\{0\}$	B	C
B	$\{1\}$	D	E
C	$\{2\}$	E	D
D	$\{0,3\}$	B	C
E	\emptyset	E	E

The final states are A and D and the start state is A.

Figure 2: DFA for $L=\{a a, b b\}^{*}$

Problem 2. (1) Given any DFA, $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$, let D^{\prime} be the DFA, $D^{\prime}=\left(Q \cup\left\{q_{0}^{\prime}\right\}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$, where q_{0}^{\prime} is a new state not in Q, with $F^{\prime}=F$ if $q_{0} \notin F$ else $F^{\prime}=F \cup\left\{q_{0}^{\prime}\right\}$, and with the transition function δ^{\prime} defined as follows:

For all $a \in \Sigma$, if $p \in Q$ then

$$
\delta^{\prime}(p, a)=\delta(p, a)
$$

else

$$
\delta^{\prime}\left(q_{0}^{\prime}, a\right)=\delta\left(q_{0}, a\right)
$$

Clearly, there are no incoming transitions into q_{0}^{\prime} and since the transitions from q_{0}^{\prime} are identical to the transitions from q_{0} and all the other transitions are the same as in D, we have $L\left(D^{\prime}\right)=L(D)$.
(2) It is false that a DFA accepts a finite language iff its contains no underlying cycle. This is because, given any DFA, there must be a transition from every state on every input and as a DFA is finite, every DFA has a cycle! For example, the following DFA over the alphabet $\{a\}$ only accepts ϵ, yet it has a cycle:

Figure 3: DFA for $\{\epsilon\}$

Problem 3. By definition, $L^{R}=\left\{w^{R} \mid w \in L\right\}$. Recall that it was proved that

$$
(u v)^{R}=v^{R} u^{R} \quad \text { and } \quad\left(w^{R}\right)^{R}=w
$$

for all $u, v, w \in \Sigma^{*}$. We have

$$
\begin{array}{lll}
w \in\left(L_{1} L_{2}\right)^{R} & \text { iff } & w^{R} \in L_{1} L_{2} \\
& \text { iff } & \left(\exists u \in L_{1}\right)\left(\exists v \in L_{2}\right)\left(w^{R}=u v\right) \\
\text { iff } & \left(\exists u \in L_{1}\right)\left(\exists v \in L_{2}\right)\left(w=v^{R} u^{R}\right) \\
& \text { iff } & \left(\exists x \in L_{1}^{R}\right)\left(\exists y \in L_{2}^{R}\right)(w=y x) \\
& \text { iff } & w \in L_{2}^{R} L_{1}^{R},
\end{array}
$$

which proves that

$$
\left(L_{1} L_{2}\right)^{R}=L_{2}^{R} L_{1}^{R} .
$$

We claim that

$$
\left(L^{n}\right)^{R}=\left(L^{R}\right)^{n}, \quad \text { for all } n \geq 0
$$

This is proved by induction. For $n=0$, we have

$$
\left(L^{0}\right)^{R}=\{\epsilon\}^{R}=\{\epsilon\}=\left(L^{R}\right)^{0},
$$

so the base case holds.
Assume the induction hypothesis holds for any $n \geq 0$. Using $\left(L_{1} L_{2}\right)^{R}=L_{2}^{R} L_{1}^{R}$, we get

$$
\left(L^{n+1}\right)^{R}=\left(L^{n} L\right)^{R}=L^{R}\left(L^{n}\right)^{R}=L^{R}\left(L^{R}\right)^{n}=\left(L^{R}\right)^{n+1}
$$

establishing the induction step.
Then, we get

$$
\left(L^{*}\right)^{R}=\left(\bigcup_{n \geq 0} L^{n}\right)^{R}=\bigcup_{n \geq 0}\left(L^{n}\right)^{R}=\bigcup_{n \geq 0}\left(L^{R}\right)^{n}=\left(L^{R}\right)^{*}
$$

so

$$
\left(L^{*}\right)^{R}=\left(L^{R}\right)^{*},
$$

as claimed.

Problem 4. Let $\Sigma=\{a, b\}$.
(1) A DFA accepting

$$
L_{1}=\left\{w \in \Sigma^{*} \mid w \text { contains an even number of } a \text { 's }\right\} .
$$

Figure 4: DFA for L_{1}
(2) A DFA accepting

$$
L_{2}=\left\{w \in \Sigma^{*} \mid w \text { contains a number of b's divisible by } 3\right\} .
$$

Figure 5: DFA for L_{2}
(3) A DFA accepting $L_{3}=L_{1} \cap L_{2}$.

The cross-product construction (for intersection) yields:

	a	b
$(0, A)$	$(1, A)$	$(0, B)$
$(0, B)$	$(1, B)$	$(0, C)$
$(0, C)$	$(1, C)$	$(0, A)$
$(1, A)$	$(0, A)$	$(1, B)$
$(1, B)$	$(0, B)$	$(1, C)$
$(1, C)$	$(0, C)$	$(1, A)$

The start state $(0, A)$ is also the only final state.

Problem 5.

Figure 6: DFA for $L_{1} \cap L_{2}$

Let $\Sigma=\{a, b\}$. Describe a method taking as input any DFA D (over $\{a, b\}$) and testing whether

$$
L(D)=\{a\}^{*} b\{a, b\}^{*}
$$

The regular language, $\{a\}^{*} b\{a, b\}^{*}$ is accepted by a two-state DFA, D^{\prime}, with $Q=\{0,1\}$, start state 0 and final state, 1 , and with

$$
\begin{aligned}
\delta(0, a) & =0 \\
\delta(0, b) & =1 \\
\delta(1, a) & =1 \\
\delta(1, b) & =1
\end{aligned}
$$

Figure 7: DFA for $\{a\}^{*} b\{a, b\}^{*}$
As $L(D)=\{a\}^{*} b\{a, b\}^{*}=L\left(D^{\prime}\right)$ iff $L(D) \subseteq L\left(D^{\prime}\right)$ and $L\left(D^{\prime}\right) \subseteq L(D)$, from the hint,

$$
L(D)=\{a\}^{*} b\{a, b\}^{*}=L\left(D^{\prime}\right) \quad \text { iff } \quad L(D)-L\left(D^{\prime}\right)=\emptyset \quad \text { and } \quad L\left(D^{\prime}\right)-L(D)=\emptyset .
$$

We know that the cross-product constructions for relative complements yields DFA's, D_{1} and D_{2}, so that $L\left(D_{1}\right)=L(D)-L\left(D^{\prime}\right)$ and $L\left(D_{2}\right)=L\left(D^{\prime}\right)-L(D)$. Thus, we can test whether $L(D)=\emptyset$ by testing whether $L\left(D_{1}\right)=\emptyset$ and $L\left(D_{2}\right)=\emptyset$. However, this holds iff
no final state of D_{1} is reachable and no final state of D_{2} is reachable, which can be tested by computing the reachable states of D_{1} and D_{2} using the algorithm described in the notes. The set of final states of D_{1} is $F \times \overline{F^{\prime}}$ and the set of final states of D_{2} is $\bar{F} \times F^{\prime}$. So no state in $F \times \overline{F^{\prime}}$ should be reachable in D_{1} and no state in $\bar{F} \times F^{\prime}$ should be reachable in D_{2}.

Problem 6.

Let $D=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA and assume that Q contains $n \geq 1$ states. Prove that if there is some string $w \in \Sigma^{*}$ such that $w \in L(D)$ and $|w| \geq n$, then there is some string $u \in \Sigma^{*}$ such that $u \in L(D)$ and $|u|<n$.

Claim. The sequence $q_{0}, q_{1}, \ldots, q_{m}$ of states in the computation from q_{0} on input w (with $m=|w|)$ with $q_{m} \in F$ must contain two identical states $q_{h}=q_{k}$, for $0 \leq h<k \leq n$.

Since $|w| \geq n$, we have $m \geq n$. The sequence

$$
q_{0}, q_{1}, \ldots, q_{n}
$$

has $n+1$ elements, but Q contains n distinct states, so by the pigeonhole principle, two of the sates in the sequence must be identical, say $q_{h}=q_{k}$, for $0 \leq h<k \leq n$.

Consider a string $u \in \Sigma^{*}$ of minimal length such that $u \in L(D)$.
Assume by contradiction that $|u| \geq n$. Then, by the claim, the sequence $q_{0}, q_{1}, \ldots, q_{m}$ of states in the computation from q_{0} on input w (with $m=|w|$) with $q_{m} \in F$ must contain two identical states $q_{h}=q_{k}$, for $0 \leq h<k \leq n$. Thus we can write $u=x y z$, where x is the string that takes us from q_{0} to q_{h}, y is the string that takes us from q_{h} to $q_{k}=q_{h}$, and z is the string that takes us from q_{q} to q_{m}, and by construction, $0<|y| \leq n$. Then by skipping the sequence of states from q_{h} back to $q_{k}=q_{h}$, we obtain the sequence

$$
q_{0}, q_{1}, \ldots, q_{h}, q_{k+1}, \ldots, q_{m}
$$

with $q_{m} \in F$, showing that $x z \in L(D)$. But since $0<|y|$, we have

$$
|x z|<|x y z|=|w|
$$

with $x z \in L(D)$, contradicting the minimality of u. Therefore, $|u|<n$, as claimed.

