
Spring 2020 CIS 262

Automata, Computability and Complexity

Jean Gallier

Solutions for the First Review Session

February 24, 2020
Solutions

Problem 1. (1) An NFA with a single ǫ-transition accepting L = {aa, bb}∗ whose transition
table

ǫ a b

0 ∅ 1 2
1 ∅ 3 ∅
2 ∅ ∅ 3
3 0 ∅ ∅

is shown below:

0

1

2

3

a

b

a

b

ǫ

Figure 1: NFA for L = {aa, bb}∗

(2) Convert the NFA of question (a) to a DFA.

1

When we apply the subset construction, we get:

a b

A {0} B C
B {1} D E
C {2} E D
D {0, 3} B C
E ∅ E E

The final states are A and D and the start state is A.

A

B

C

E D

a

b

b
a

a
b

a

b

a, b

Figure 2: DFA for L = {aa, bb}∗

Problem 2. (1) Given any DFA, D = (Q,Σ, δ, q0, F), let D′ be the DFA,
D′ = (Q ∪ {q′0},Σ, δ

′, q′0, F
′), where q′0 is a new state not in Q, with F ′ = F if q0 /∈ F else

F ′ = F ∪ {q′0}, and with the transition function δ′ defined as follows:

For all a ∈ Σ, if p ∈ Q then
δ′(p, a) = δ(p, a)

else
δ′(q′0, a) = δ(q0, a).

Clearly, there are no incoming transitions into q′0 and since the transitions from q′0 are
identical to the transitions from q0 and all the other transitions are the same as in D, we
have L(D′) = L(D).

(2) It is false that a DFA accepts a finite language iff its contains no underlying cycle.
This is because, given any DFA, there must be a transition from every state on every input
and as a DFA is finite, every DFA has a cycle! For example, the following DFA over the
alphabet {a} only accepts ǫ, yet it has a cycle:

2

0 1
a

a

Figure 3: DFA for {ǫ}

Problem 3. By definition, LR = {wR | w ∈ L}. Recall that it was proved that

(uv)R = vRuR and (wR)R = w,

for all u, v, w ∈ Σ∗. We have

w ∈ (L1L2)
R iff wR ∈ L1L2

iff (∃u ∈ L1)(∃v ∈ L2)(w
R = uv)

iff (∃u ∈ L1)(∃v ∈ L2)(w = vRuR)

iff (∃x ∈ LR
1)(∃y ∈ LR

2)(w = yx)

iff w ∈ LR
2 L

R
1 ,

which proves that
(L1L2)

R = LR
2 L

R
1 .

We claim that
(Ln)R = (LR)n, for all n ≥ 0.

This is proved by induction. For n = 0, we have

(L0)R = {ǫ}R = {ǫ} = (LR)0,

so the base case holds.

Assume the induction hypothesis holds for any n ≥ 0. Using (L1L2)
R = LR

2 L
R
1 , we get

(Ln+1)R = (LnL)R = LR(Ln)R = LR(LR)n = (LR)n+1,

establishing the induction step.

Then, we get

(L∗)R =

(

⋃

n≥0

Ln

)R

=
⋃

n≥0

(Ln)R =
⋃

n≥0

(LR)n = (LR)∗,

so
(L∗)R = (LR)∗,

as claimed.

3

Problem 4. Let Σ = {a, b}.

(1) A DFA accepting

L1 = {w ∈ Σ∗ | w contains an even number of a’s}.

0 1
a

a

b b

Figure 4: DFA for L1

(2) A DFA accepting

L2 = {w ∈ Σ∗ | w contains a number of b’s divisible by 3}.

A B

C

b

bb

a a

a

Figure 5: DFA for L2

(3) A DFA accepting L3 = L1 ∩ L2.

The cross-product construction (for intersection) yields:

a b

(0, A) (1, A) (0, B)
(0, B) (1, B) (0, C)
(0, C) (1, C) (0, A)
(1, A) (0, A) (1, B)
(1, B) (0, B) (1, C)
(1, C) (0, C) (1, A)

The start state (0, A) is also the only final state.

Problem 5.

4

(0, A) (0, B) (0, C)

(1, A) (1, B) (1, C)

b b

b b

aa aa aa

b

b

Figure 6: DFA for L1 ∩ L2

Let Σ = {a, b}. Describe a method taking as input any DFA D (over {a, b}) and testing
whether

L(D) = {a}∗b{a, b}∗.

The regular language, {a}∗b{a, b}∗ is accepted by a two-state DFA, D′, with Q = {0, 1},
start state 0 and final state, 1, and with

δ(0, a) = 0

δ(0, b) = 1

δ(1, a) = 1

δ(1, b) = 1.

0 1
b

a a, b

Figure 7: DFA for {a}∗b{a, b}∗

As L(D) = {a}∗b{a, b}∗ = L(D′) iff L(D) ⊆ L(D′) and L(D′) ⊆ L(D), from the hint,

L(D) = {a}∗b{a, b}∗ = L(D′) iff L(D)− L(D′) = ∅ and L(D′)− L(D) = ∅.

We know that the cross-product constructions for relative complements yields DFA’s, D1

and D2, so that L(D1) = L(D) − L(D′) and L(D2) = L(D′) − L(D). Thus, we can test
whether L(D) = ∅ by testing whether L(D1) = ∅ and L(D2) = ∅. However, this holds iff

5

no final state of D1 is reachable and no final state of D2 is reachable, which can be tested
by computing the reachable states of D1 and D2 using the algorithm described in the notes.
The set of final states of D1 is F ×F ′ and the set of final states of D2 is F ×F ′. So no state
in F × F ′ should be reachable in D1 and no state in F × F ′ should be reachable in D2.

Problem 6.

Let D = (Q,Σ, δ, q0, F) be a DFA and assume that Q contains n ≥ 1 states. Prove that
if there is some string w ∈ Σ∗ such that w ∈ L(D) and |w| ≥ n, then there is some string
u ∈ Σ∗ such that u ∈ L(D) and |u| < n.

Claim. The sequence q0, q1, . . . , qm of states in the computation from q0 on input w (with
m = |w|) with qm ∈ F must contain two identical states qh = qk, for 0 ≤ h < k ≤ n.

Since |w| ≥ n, we have m ≥ n. The sequence

q0, q1, . . . , qn

has n + 1 elements, but Q contains n distinct states, so by the pigeonhole principle, two of
the sates in the sequence must be identical, say qh = qk, for 0 ≤ h < k ≤ n.

Consider a string u ∈ Σ∗ of minimal length such that u ∈ L(D).

Assume by contradiction that |u| ≥ n. Then, by the claim, the sequence q0, q1, . . . , qm
of states in the computation from q0 on input w (with m = |w|) with qm ∈ F must contain
two identical states qh = qk, for 0 ≤ h < k ≤ n. Thus we can write u = xyz, where x is the
string that takes us from q0 to qh, y is the string that takes us from qh to qk = qh, and z is
the string that takes us from qq to qm, and by construction, 0 < |y| ≤ n. Then by skipping
the sequence of states from qh back to qk = qh, we obtain the sequence

q0, q1, . . . , qh, qk+1, . . . , qm

with qm ∈ F , showing that xz ∈ L(D). But since 0 < |y|, we have

|xz| < |xyz| = |w|

with xz ∈ L(D), contradicting the minimality of u. Therefore, |u| < n, as claimed.

6

