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Problem 1. (1) An NFA with a single e-transition accepting L = {aa, bb}* whose transition
table

is shown below:

Figure 1: NFA for L = {aa, bb}*

(2) Convert the NFA of question (a) to a DFA.



When we apply the subset construction, we get:

L [a]b]
Al{oy |[B[C
B|{1} |D|E
cl{2y |E|D
D|{0,3}|B|C
E|0 E|E

The final states are A and D and the start state is A.
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Figure 2: DFA for L = {aa, bb}*

Problem 2. (1) Given any DFA, D = (Q, %, 0, qo, F'), let D" be the DFA,
D' = (QU{qg}, %, ¢, q) F'), where ¢ is a new state not in @, with F' = F if ¢y ¢ F else
F' = FU{q,}, and with the transition function ¢’ defined as follows:

For all a € X, if p € @ then
d'(p,a) = d(p, a)
else
5/(616, a) = 5(Q07 CL).

Clearly, there are no incoming transitions into ¢ and since the transitions from ¢} are

identical to the transitions from ¢y and all the other transitions are the same as in D, we
have L(D") = L(D).

(2) It is false that a DFA accepts a finite language iff its contains no underlying cycle.
This is because, given any DFA, there must be a transition from every state on every input
and as a DFA is finite, every DFA has a cycle! For example, the following DFA over the
alphabet {a} only accepts €, yet it has a cycle:
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Figure 3: DFA for {e}

Problem 3. By definition, L® = {w® | w € L}. Recall that it was proved that
(w0)? = vfuf and  (w)F = w,
for all u,v,w € ¥*. We have
S (Lng)R iff UJR S L1L2
iff (Ju € L1)(Fv € Ly)(w® = ww)
iff (Ju € L1)(Fv € Ly)(w = vFu®)
iff (Jz e L3y € L) (w = yx)
iff we L¥LY,

which proves that
(L1 Lo)" = LELY.

We claim that
(L™)% = (L%, for all n > 0.

This is proved by induction. For n = 0, we have
(L) ={e} = {e} = (L7)",
so the base case holds.
Assume the induction hypothesis holds for any n > 0. Using (L, Ls)® = LELE, we get
(L) = (LML) = LD = LAY = (L),

establishing the induction step.

Then, we get
(U Ln> _ U n) _ U(LR)n _ (LR)>f<7
n>0 n>0 n>0
SO
(L) = (L7,
as claimed.



Problem 4. Let ¥ = {a,b}.
(1) A DFA accepting

Ly = {w € ¥* | w contains an even number of a’s}.
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Figure 4: DFA for L,

(2) A DFA accepting

Ly = {w € ¥* | w contains a number of b’s divisible by 3}.

Figure 5: DFA for Lo

(3) A DFA accepting L3z = Li N Ls.

The cross-product construction (for intersection) yields:

| | o« [ b |
0,4) | (LA) | (0, B)
(0,B) | (1,B) | (0,C)
0,0) | (1,0) | (0, 4)
(1,4) | (0,4) | (1,B)
(1,B)| (0,B) | (1,C)
(1,C) | (0,0) | (1,4)

The start state (0, A) is also the only final state.

Problem 5.
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Figure 6: DFA for Ly N Ly
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Let ¥ = {a, b}. Describe a method taking as input any DFA D (over {a,b}) and testing
whether
L(D) ={a}*b{a,b}".

The regular language, {a}*b{a,b}* is accepted by a two-state DFA, D', with @ = {0,1},
start state 0 and final state, 1, and with

3(0,a) 0
5(0,b) = 1
i(l,a) = 1
§(L,0) = 1

a a,b
Cam
Figure 7: DFA for {a}*b{a,b}"
As L(D) = {a}*b{a,b}* = L(D") iff L(D) C L(D') and L(D") C L(D), from the hint,
L(D) = {a}*b{a,b}* = L(D") iff L(D)—L(D)=0 and L(D")— L(D)=1.
We know that the cross-product constructions for relative complements yields DFA’s;, D,

and Ds, so that L(D;) = L(D) — L(D’) and L(Ds) = L(D") — L(D). Thus, we can test
whether L(D) = 0 by testing whether L(D;) = 0 and L(D,) = (. However, this holds iff
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no final state of D, is reachable and no final state of D, is reachable, which can be tested
by computing the reachable states of D; and D, using the algorithm described in the notes.
The set of final states of Dy is F x F and the set of final states of Dy is F' x F’. So no state
in F' x F’ should be reachable in D; and no state in F' x F’ should be reachable in Ds.

Problem 6.

Let D = (Q, %, 4, qo, F') be a DFA and assume that () contains n > 1 states. Prove that
if there is some string w € X* such that w € L(D) and |w| > n, then there is some string
u € ¥* such that v € L(D) and |u| < n.

Claim. The sequence qo, q1, - . . , g Of states in the computation from ¢y on input w (with
m = |wl|) with g,, € F must contain two identical states ¢, = qx, for 0 < h < k < n.

Since |w| > n, we have m > n. The sequence

qo,q1,---,4n

has n 4+ 1 elements, but () contains n distinct states, so by the pigeonhole principle, two of
the sates in the sequence must be identical, say g, = qx, for 0 < h < k < n.
Consider a string u € X* of minimal length such that v € L(D).

Assume by contradiction that |u| > n. Then, by the claim, the sequence qo, q1, - - -, Gm
of states in the computation from ¢ on input w (with m = |w|) with ¢,, € F must contain
two identical states ¢, = qx, for 0 < h < k < n. Thus we can write u = xyz, where x is the
string that takes us from ¢y to ¢, y is the string that takes us from ¢, to ¢, = ¢, and z is
the string that takes us from g, to g,,, and by construction, 0 < |y| < n. Then by skipping
the sequence of states from ¢ back to ¢, = g5, we obtain the sequence

qo, 41,59, G415 - - -5 dm
with ¢, € F, showing that xz € L(D). But since 0 < |y|, we have
2] < leyz| = |w]

with zz € L(D), contradicting the minimality of u. Therefore, |u| < n, as claimed.



