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CHAPTER 3

Historical Ciphers

Chapter Goals

• To explain a number of historical ciphers, such as the Caesar cipher, substitution cipher.
• To show how these historical ciphers can be broken because they do not hide the underlying

statistics of the plaintext.
• To introduce the concepts of substitution and permutation as basic cipher components.
• To introduce a number of attack techniques, such as chosen plaintext attacks.

1. Introduction

An encryption algorithm, or cipher, is a means of transforming plaintext into ciphertext under
the control of a secret key. This process is called encryption or encipherment. We write

c = ek(m),

where
• m is the plaintext,
• e is the cipher function,
• k is the secret key,
• c is the ciphertext.

The reverse process is called decryption or decipherment, and we write

m = dk(c).

Note, that the encryption and decryption algorithms e, d are public, the secrecy of m given c
depends totally on the secrecy of k.

The above process requires that each party needs access to the secret key. This needs to be
known to both sides, but needs to be kept secret. Encryption algorithms which have this property
are called symmetric cryptosystems or secret key cryptosystems. There is a form of cryptography
which uses two different types of key, one is publicly available and used for encryption whilst the
other is private and used for decryption. These latter types of cryptosystems are called asymmetric
cryptosystems or public key cryptosystems, to which we shall return in a later chapter.

Usually in cryptography the communicating parties are denoted by A and B. However, often
one uses the more user-friendly names of Alice and Bob. But you should not assume that the
parties are necessarily human, we could be describing a communication being carried out between
two autonomous machines. The eavesdropper, bad girl, adversary or attacker is usually given the
name Eve.

In this chapter we shall present some historical ciphers which were used in the pre-computer
age to encrypt data. We shall show that these ciphers are easy to break as soon as one understands
the statistics of the underlying language, in our case English. In Chapter 5 we shall study this
relationship between how easy the cipher is to break and the statistical distribution of the underlying
plaintext.
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38 3. HISTORICAL CIPHERS

Table 1. English letter frequencies

Letter Percentage Letter Percentage
A 8.2 N 6.7
B 1.5 O 7.5
C 2.8 P 1.9
D 4.2 Q 0.1
E 12.7 R 6.0
F 2.2 S 6.3
G 2.0 T 9.0
H 6.1 U 2.8
I 7.0 V 1.0
J 0.1 W 2.4
K 0.8 X 0.1
L 4.0 Y 2.0
M 2.4 Z 0.1

Figure 1. English letter frequencies
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The distribution of English letter frequencies is described in Table 1, or graphically in Fig. 1.
As one can see the most common letters are E and T. It often helps to know second order statistics
about the underlying language, such as which are the most common sequences of two or three
letters, called bigrams and trigrams. The most common bigrams in English are given by Table 2,
with the associated approximate percentages. The most common trigrams are, in decreasing order,

THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR.
Armed with this information about English we are now able to examine and break a number of
historical ciphers.

Table 2. English bigram frequencies

Bigram Percentage Bigram Percentage
TH 3.15 HE 2.51
AN 1.72 IN 1.69
ER 1.54 RE 1.48
ES 1.45 ON 1.45
EA 1.31 TI 1.28
AT 1.24 ST 1.21
EN 1.20 ND 1.18
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2. Shift Cipher

We first present one of the earliest ciphers, called the shift cipher. Encryption is performed by
replacing each letter by the letter a certain number of places on in the alphabet. So for example if
the key was three, then the plaintext A would be replaced by the ciphertext D, the letter B would
be replaced by E and so on. The plaintext word HELLO would be encrypted as the ciphertext
KHOOR. When this cipher is used with the key three, it is often called the Caesar cipher, although
in many books the name Caesar cipher is sometimes given to the shift cipher with any key. Strictly
this is not correct since we only have evidence that Julius Caesar used the cipher with the key
three.

There is a more mathematical explanation of the shift cipher which will be instructive for future
discussions. First we need to identify each letter of the alphabet with a number. It is usual to
identify the letter A with the number 0, the letter B with number 1, the letter C with the number
2 and so on until we identify the letter Z with the number 25. After we convert our plaintext
message into a sequence of numbers, the ciphertext in the shift cipher is obtained by adding to
each number the secret key k modulo 26, where the key is a number in the range 0 to 25. In this
way we can interpret the shift cipher as a stream cipher, with key stream given by the repeating
sequence

k, k, k, k, k, k, . . .

This key stream is not very random, which results in it being easy to break the shift cipher. A
naive way of breaking the shift cipher is to simply try each of the possible keys in turn, until the
correct one is found. There are only 26 possible keys so the time for this exhaustive key search is
very small, particularly if it is easy to recognize the underlying plaintext when it is decrypted.

We shall show how to break the shift cipher by using the statistics of the underlying language.
Whilst this is not strictly necessary for breaking this cipher, later we shall see a cipher that is made
up of a number of shift ciphers applied in turn and then the following statistical technique will be
useful. Using a statistical technique on the shift cipher is also instructive as to how statistics of the
underlying plaintext can arise in the resulting ciphertext.

Take the following example ciphertext, which since it is public knowledge we represent in blue.
GB OR, BE ABG GB OR: GUNG VF GUR DHRFGVBA:
JURGURE ’GVF ABOYRE VA GUR ZVAQ GB FHSSRE
GUR FYVATF NAQ NEEBJF BS BHGENTRBHF SBEGHAR,
BE GB GNXR NEZF NTNVAFG N FRN BS GEBHOYRF,
NAQ OL BCCBFVAT RAQ GURZ? GB QVR: GB FYRRC;
AB ZBER; NAQ OL N FYRRC GB FNL JR RAQ
GUR URNEG-NPUR NAQ GUR GUBHFNAQ ANGHENY FUBPXF
GUNG SYRFU VF URVE GB, ’GVF N PBAFHZZNGVBA
QRIBHGYL GB OR JVFU’Q. GB QVR, GB FYRRC;
GB FYRRC: CREPUNAPR GB QERNZ: NL, GURER’F GUR EHO;
SBE VA GUNG FYRRC BS QRNGU JUNG QERNZF ZNL PBZR
JURA JR UNIR FUHSSYRQ BSS GUVF ZBEGNY PBVY,
ZHFG TVIR HF CNHFR: GURER’F GUR ERFCRPG
GUNG ZNXRF PNYNZVGL BS FB YBAT YVSR;

One technique of breaking the previous sample ciphertext is to notice that the ciphertext still
retains details about the word lengths of the underlying plaintext. For example the ciphertext
letter N appears as a single letter word. Since the only single letter words in English are A and I
we can conclude that the key is either 13, since N is thirteen letters on from A in the alphabet,
or the key is equal to 5, since N is five letters on from I in the alphabet. Hence, the moral here
is to always remove word breaks from the underlying plaintext before encrypting using the shift
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cipher. But even if we ignore this information about the words we can still break this cipher using
frequency analysis.

We compute the frequencies of the letters in the ciphertext and compare them with the fre-
quencies obtained from English which we saw in Fig. 1. We present the two bar graphs one above
each other in Fig. 2 so you can see that one graph looks almost like a shift of the other graph.
The statistics obtained from the sample ciphertext are given in blue, whilst the statistics obtained
from the underlying plaintext language are given in red. Note, we do not compute the red statistics
from the actual plaintext since we do not know this yet, we only make use of the knowledge of the
underlying language.

Figure 2. Comparison of plaintext and ciphertext frequencies for the shift cipher example
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By comparing the two bar graphs in Fig. 2 we can see by how much we think the blue graph
has been shifted compared with the red graph. By examining where we think the plaintext letter
E may have been shifted, one can hazard a guess that it is shifted by one of

2, 9, 13 or 23.

Then by trying to deduce by how much the plaintext letter A has been shifted we can guess that
it has been shifted by one of

1, 6, 13 or 17.

The only shift value which is consistent appears to be the value 13, and we conclude that this is
the most likely key value. We can now decrypt the ciphertext, using this key. This reveals, that
the underlying plaintext is:
To be, or not to be: that is the question:
Whether ’tis nobler in the mind to suffer
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,
And by opposing end them? To die: to sleep;
No more; and by a sleep to say we end
The heart-ache and the thousand natural shocks
That flesh is heir to, ’tis a consummation
Devoutly to be wish’d. To die, to sleep;
To sleep: perchance to dream: ay, there’s the rub;
For in that sleep of death what dreams may come
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When we have shuffled off this mortal coil,
Must give us pause: there’s the respect
That makes calamity of so long life;

The above text is obviously taken from Hamlet by William Shakespeare.

3. Substitution Cipher

The main problem with the shift cipher is that the number of keys is too small, we only have
26 possible keys. To increase the number of keys a substitution cipher was invented. To write down
a key for the substitution cipher we first write down the alphabet, and then a permutation of the
alphabet directly below it. This mapping gives the substitution we make between the plaintext
and the ciphertext

Plaintext alphabet ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext alphabet GOYDSIPELUAVCRJWXZNHBQFTMK

Encryption involves replacing each letter in the top row by its value in the bottom row. Decryption
involves first looking for the letter in the bottom row and then seeing which letter in the top row
maps to it. Hence, the plaintext word HELLO would encrypt to the ciphertext ESVVJ if we used
the substitution given above.

The number of possible keys is equal to the total number of permutations on 26 letters, namely
the size of the group S26, which is

26! ≈ 4.03 · 1026 ≈ 288.

Since, as a rule of thumb, it is feasible to only run a computer on a problem which takes under 280

steps we can deduce that this large key space is far too large to enable a brute force search even
using a modern computer. Still we can break substitution ciphers using statistics of the underlying
plaintext language, just as we did for the shift cipher.

Whilst the shift cipher can be considered as a stream cipher since the ciphertext is obtained
from the plaintext by combining it with a keystream, the substitution cipher operates much more
like a modern block cipher, with a block length of one English letter. A ciphertext block is obtained
from a plaintext block by applying some (admittedly simple) key dependent algorithm.

Substitution ciphers are the types of ciphers commonly encountered in puzzle books, they have
an interesting history and have occurred in literature. See for example the Sherlock Holmes story
The Adventure of the Dancing Men by Arthur Conan–Doyle. The plot of this story rests on a
substitution cipher where the ciphertext characters are taken from an alphabet of ‘stick men’ in
various positions. The method of breaking the cipher as described by Holmes to Watson in this
story is precisely the method we shall adopt below.

We give a detailed example, which we make slightly easier by keeping in the ciphertext details
about the underlying word spacing used in the plaintext. This is only for ease of exposition, the
techniques we describe can still be used if we ignore these word spacings, although more care and
thought is required.

Consider the ciphertext
XSO MJIWXVL JODIVA STW VAO VY OZJVCO’W LTJDOWX KVAKOAXJTXIVAW VY

SIDS XOKSAVLVDQ IAGZWXJQ. KVUCZXOJW, KVUUZAIKTXIVAW TAG UIKJVOLOKXJ-
VAIKW TJO HOLL JOCJOWOAXOG, TLVADWIGO GIDIXTL UOGIT, KVUCZXOJ DTUOW
TAG OLOKXJVAIK KVUUOJKO. TW HOLL TW SVWXIAD UTAQ JOWOTJKS TAG
CJVGZKX GONOLVCUOAX KOAXJOW VY UTPVJ DLVMTL KVUCTAIOW, XSO JO-
DIVA STW T JTCIGLQ DJVHIAD AZUMOJ VY IAAVNTXINO AOH KVUCTAIOW. XSO
KVUCZXOJ WKIOAKO GOCTJXUOAX STW KLVWO JOLTXIVAWSICW HIXS UTAQ
VY XSOWO VJDTAIWTXIVAW NIT KVLLTMVJTXINO CJVPOKXW, WXTYY WOK-
VAGUOAXW TAG NIWIXIAD IAGZWXJITL WXTYY. IX STW JOKOAXLQ IAXJVGZKOG
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WONOJTL UOKSTAIWUW YVJ GONOLVCIAD TAG WZCCVJXIAD OAXJOCJOAOZJITL
WXZGOAXW TAG WXTYY, TAG TIUW XV CLTQ T WIDAIYIKTAX JVLO IA XSO
GONOLVCUOAX VY SIDS-XOKSAVLVDQ IAGZWXJQ IA XSO JODIVA.

XSO GOCTJXUOAX STW T LTJDO CJVDJTUUO VY JOWOTJKS WZCCVJXOG MQ
IAGZWXJQ, XSO OZJVCOTA ZAIVA, TAG ZE DVNOJAUOAX JOWOTJKS OWXTMLIW-
SUOAXW TAG CZMLIK KVJCVJTXIVAW. T EOQ OLOUOAX VY XSIW IW XSO WXJ-
VAD LIAEW XSTX XSO GOCTJXUOAX STW HIXS XSO KVUCZXOJ, KVUUZAIKTXIVAW,
UIKJVOLOKXJVAIKW TAG UOGIT IAGZWXJIOW IA XSO MJIWXVL JODIVA . XSO TKT-
GOUIK JOWOTJKS CJVDJTUUO IW VJDTAIWOG IAXV WONOA DJVZCW, LTADZTDOW
TAG TJKSIXOKXZJO, GIDIXTL UOGIT, UVMILO TAG HOTJTMLO KVUCZXIAD, UTK-
SIAO LOTJAIAD, RZTAXZU KVUCZXIAD, WQWXOU NOJIYIKTXIVA, TAG KJQCXVD-
JTCSQ TAG IAYVJUTXIVA WOKZJIXQ.

We can compute the following frequencies for single letters in the above ciphertext:
Letter Freq Letter Freq Letter Freq

A 8.6995 B 0.0000 C 3.0493
D 3.1390 E 0.2690 F 0.0000
G 3.6771 H 0.6278 I 7.8923
J 7.0852 K 4.6636 L 3.5874
M 0.8968 N 1.0762 O 11.479
P 0.1793 Q 1.3452 R 0.0896
S 3.5874 T 8.0717 U 4.1255
V 7.2645 W 6.6367 X 8.0717
Y 1.6143 Z 2.7802

In addition we determine that the most common bigrams in this piece of ciphertext are
TA, AX, IA, VA, WX, XS, AG, OA, JO, JV,

whilst the most common trigrams are
OAX, TAG, IVA, XSO, KVU, TXI, UOA, AXS.

Since the ciphertext letter O occurs with the greatest frequency, namely 11.479, we can guess
that the ciphertext letter O corresponds to the plaintext letter E. We now look at what this means
for two of the common trigrams found in the ciphertext

• The ciphertext trigram OAX corresponds to E * *.
• The ciphertext trigram XSO corresponds to * * E.

We examine similar common similar trigrams in English, which start or end with the letter E. We
find that three common ones are given by ENT, ETH and THE. Since the two trigrams we wish
to match have one starting with the same letter as the other finishes with, we can conclude that it
is highly likely that we have the correspondence

• X = T,
• S = H,
• A = N.

Even after this small piece of analysis we find that it is much easier to understand what the
underlying plaintext should be. If we focus on the first two sentences of the ciphertext we are
trying to break, and we change the letters which we think we have found the correct mappings for,
then we obtain:

THE MJIWTVL JEDIVN HTW VNE VY EZJVCE’W LTJDEWT
KVNKENTJTTIV NW VY HIDH TEKHNVLVDQ INGZWTJQ.
KVUCZTEJW, KVUUZNIKTTIVNW TNG UIKJVELEKTJVNIKW
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TJE HELL JECJEWENTEG, TLVNDWIGE GIDITTL UEGIT,
KVUCZTEJ DTUEW TNG ELEKTJVNIK KVUUEJKE.

Recall, this was after the four substitutions
O = E, X = T, S = H, A = N.

We now cheat and use the fact that we have retained the word sizes in the ciphertext. We see that
since the letter T occurs as a single ciphertext letter we must have

T = I or T = A.
The ciphertext letter T occurs with a probability of 8.0717, which is the highest probability left,
hence we are far more likely to have

T = A.
We have already considered the most popular trigram in the ciphertext so turning our attention
to the next most popular trigram we see that it is equal to TAG which we suspect corresponds to
the plaintext AN*. Therefore it is highly likely that G = D, since AND is a popular trigram in
English.

Our partially decrypted ciphertext is now equal to
THE MJIWTVL JEDIVN HAW VNE VY EZJVCE’W LAJDEWT

KVNKENTJATIV NW VY HIDH TEKHNVLVDQ INDZWTJQ.
KVUCZTEJW, KVUUZNIKATIVNW AND UIKJVELEKTJVNIKW
AJE HELL JECJEWENTED, ALVNDWIDE DIDITAL UEDIA,
KVUCZTEJ DAUEW AND ELEKTJVNIK KVUUEJKE.

This was after the six substitutions
O = E, X = T, S = H,
A = N, T = A, G = D.

We now look at two-letter words which occur in the ciphertext:
• IX

This corresponds to the plaintext *T. Therefore the ciphertext letter I must be one of the
plaintext letters A or I, since the only two-letter words in English ending in T are AT and
IT. We already have worked out what the plaintext character A corresponds to, hence we
must have I = I.

• XV
This corresponds to the plaintext T*. Hence, we must have V = O.

• VY
This corresponds to the plaintext O*. Hence, the ciphertext letter Y must correspond
to one of F, N or R. We already know the ciphertext letter corresponding to N. In the
ciphertext the probability of Y occurring is 1.6, but in English we expect F to occur with
probability 2.2 and R to occur with probability 6.0. Hence, it is more likely that Y = F.

• IW
This corresponds to the plaintext I*. Therefore, the plaintext character W must be one
of F, N, S and T. We already have F, N, T, hence W = S.

All these deductions leave the partial ciphertext as
THE MJISTOL JEDION HAS ONE OF EZJOCE’S LAJDEST

KONKENTJATIONS OF HIDH TEKHNOLODQ INDZSTJQ.
KOUCZTEJS, KOUUZNIKATIONS AND UIKJOELEKTJONIKS AJE
HELL JECJESENTED, ALONDSIDE DIDITAL UEDIA,
KOUCZTEJ DAUES AND ELEKTJONIK KOUUEJKE.

This was after the ten substitutions
O = E, X = T, S = H, A = N, T = A,
G = D, I = I, V = O, Y = F, W = S.
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Even with half the ciphertext letters determined it is now quite easy to understand the underlying
plaintext, taken from the website of the University of Bristol Computer Science Department. We
leave it to the reader to determine the final substitutions and recover the plaintext completely.

4. Vigenère Cipher

The problem with the shift cipher and the substitution cipher was that each plaintext letter
always encrypted to the same ciphertext letter. Hence underlying statistics of the language could be
used to break the cipher. For example it was easy to determine which ciphertext letter corresponded
to the plaintext letter E. From the early 1800s onwards, cipher designers tried to break this link
between the plaintext and ciphertext.

The substitution cipher we used above was a mono-alphabetic substitution cipher, in that only
one alphabet substitution was used to encrypt the whole alphabet. One way to solve our problem is
to take a number of substitution alphabets and then encrypt each letter with a different alphabet.
Such a system is called a polyalphabetic substitution cipher.

For example we could take
Plaintext alphabet ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ciphertext alphabet one TMKGOYDSIPELUAVCRJWXZNHBQF
Ciphertext alphabet two DCBAHGFEMLKJIZYXWVUTSRQPON

Then the plaintext letters in an odd position we encrypt using the first ciphertext alphabet, whilst
the plaintext letters in even positions we encrypt using the second alphabet. For example the
plaintext word HELLO, using the above alphabets would encrypt to SHLJV. Notice that the two
occurrences of L in the plaintext encrypt to two different ciphertext characters. Thus we have
made it harder to use the underlying statistics of the language. If one now does a naive frequency
analysis we no longer get a common ciphertext letter corresponding to the plaintext letter E.

We essentially are encrypting the message two letters at a time, hence we have a block cipher
with block length two English characters. In real life one may wish to use around five rather than
just two alphabets and the resulting key becomes very large indeed. With five alphabets the total
key space is

(26!)5 ≈ 2441,

but the user only needs to remember the key which is a sequence of

26 · 5 = 130

letters. However, just to make life hard for the attacker, the number of alphabets in use should
also be hidden from his view and form part of the key. But for the average user in the early 1800s
this was far too unwieldy a system, since the key was too hard to remember.

Despite its shortcomings the most famous cipher during the 19th-century was based on precisely
this principle. The Vigenère cipher, invented in 1533 by Giovan Batista Belaso, was a variant on
the above theme, but the key was easy to remember. When looked at in one way the Vigenère
cipher is a polyalphabetic block cipher, but when looked at in another, it is a stream cipher which
is a natural generalization of the shift cipher.

The description of the Vigenère cipher as a block cipher takes the description of the polyal-
phabetic cipher above but restricts the possible plaintext alphabets to one of the 26 possible cyclic
shifts of the standard alphabet. Suppose five alphabets were used, this reduces the key space down
to

265 ≈ 223

and the size of the key to be remembered as a sequence of five numbers between 0 and 25.
However, the description of the Vigenère cipher as a stream cipher is much more natural. Just

like the shift cipher, the Vigenère cipher again identifies letters with the numbers 0, . . . , 25. The
secret key is a short sequence of letters (e.g. a word) which is repeated again and again to form
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a keystream. Encryption involves adding the plaintext letter to a key letter. Thus if the key is
SESAME, encryption works as follows,

THISISATESTMESSAGE
SESAMESESAMESESAME
LLASUWSXWSFQWWKASI

Again we notice that A will encrypt to a different letter depending on where it appears in the
message.

But the Vigenère cipher is still easy to break using the underlying statistics of English. Once
we have found the length of the keyword, breaking the ciphertext is the same as breaking the shift
cipher a number of times.

As an example, suppose the ciphertext is given by
UTPDHUG NYH USVKCG MVCE FXL KQIB. WX RKU GI TZN, RLS BBHZLXMSNP

KDKS; CEB IH HKEW IBA, YYM SBR PFR SBS, JV UPL O UVADGR HRRWXF. JV ZTVOOV
YH ZCQU Y UKWGEB, PL UQFB P FOUKCG, TBF RQ VHCF R KPG, OU KFT ZCQU MAW
QKKW ZGSY, FP PGM QKFTK UQFB DER EZRN, MCYE, MG UCTFSVA, WP KFT ZCQU
MAW KQIJS. LCOV NTHDNV JPNUJVB IH GGV RWX ONKCGTHKFL XG VKD, ZJM VG
CCI MVGD JPNUJ, RLS EWVKJT ASGUCS MVGD; DDK VG NYH PWUV CCHIIY RD DBQN
RWTH PFRWBBI VTTK VCGNTGSF FL IAWU XJDUS, HFP VHCF, RR LAWEY QDFS
RVMEES FZB CHH JRTT MVGZP UBZN FD ATIIYRTK WP KFT HIVJCI; TBF BLDPWPX
RWTH ULAW TG VYCHX KQLJS US DCGCW OPPUPR, VG KFDNUJK GI JIKKC PL KGCJ
IAOV KFTR GJFSAW KTZLZES WG RWXWT VWTL WP XPXGG, CJ FPOS VYC BTZCUW
XG ZGJQ PMHTRAIBJG WMGFG. JZQ DPB JVYGM ZCLEWXR: CEB IAOV NYH JIKKC
TGCWXF UHF JZK.

WX VCU LD YITKFTK WPKCGVCWIQT PWVY QEBFKKQ, QNH NZTTW IRFL IAS
VFRPE ODJRXGSPTC EKWPTGEES, GMCG
TTVVPLTFFJ; YCW WV NYH TZYRWH LOKU MU AWO, KFPM VG BLTP VQN RD DSGG
AWKWUKKPL KGCJ, XY OPP KPG ONZTT ICUJCHLSF KFT DBQNJTWUG. DYN MVCK
ZT MFWCW HTWF FD JL, OPU YAE CH LQ! PGR UF, YH MWPP RXF CDJCGOSF, XMS
UZGJQ JL, SXVPN HBG!

There is a way of finding the length of the keyword, which is repeated to form the keystream,
called the Kasiski test. First we need to look for repeated sequences of characters. Recall that
English has a large repetition of certain bigrams or trigrams and over a long enough string of text
these are likely to match up to the same two or three letters in the key every so often. By examining
the distance between two repeated sequences we can guess the length of the keyword. Each of these
distances should be a multiple of the keyword, hence taking the greatest common divisor of all
distances between the repeated sequences should give a good guess as to the keyword length.

Let us examine the above ciphertext and look for the bigram WX. The gaps between some of
the occurrences of this bigram are 9, 21, 66 and 30, some of which may have occurred by chance,
whilst some may reveal information about the length of the keyword. We now take the relevant
greatest common divisors to find,

gcd(30, 66) = 6,
gcd(3, 9) = gcd(9, 66) = gcd(9, 30) = gcd(21, 66) = 3.

We are unlikely to have a keyword of length three so we conclude that the gaps of 9 and 21 occurred
purely by chance. Hence, our best guess for the keyword is that it is of length 6.

Now we take every sixth letter and look at the statistics just as we did for a shift cipher to
deduce the first letter of the keyword. We can now see the advantage of using the histograms to
break the shift cipher earlier. If we used the naive method and tried each of the 26 keys in turn we
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could still not detect which key is correct, since every sixth letter of an English sentence does not
produce an English sentence. Using our earlier histogram based method is more efficient in this
case.

Figure 3. Comparison of plaintext and ciphertext frequencies for every sixth letter
of the Vigenère example, starting with the first letter
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Figure 4. Comparison of plaintext and ciphertext frequencies for every sixth letter
of the Vigenère example, starting with the second letter
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The relevant bar charts for every sixth letter starting with the first are given in Fig. 3. We look
for the possible locations of the three peaks corresponding to the plaintext letters A, E and T. We
see that this sequence seems to be shifted by two positions in the blue graph compared with the
red graph. Hence we can conclude that the first letter of the keyword is C, since C corresponds to
a shift of two.

We perform a similar step for every sixth letter, starting with the second one. The resulting
bar graphs are given in Fig. 4. Using the same technique we find that the blue graph appears to



5. A PERMUTATION CIPHER 47

have been shifted along by 17 spaces, which corresponds to the second letter of the keyword being
equal to R.

Continuing in a similar way for the remaining four letters of the keyword we find the keyword
is

CRYPTO.
The underlying plaintext is then found to be:

Scrooge was better than his word. He did it all, and infinitely more; and to Tiny Tim, who did
not die, he was a second father. He became as good a friend, as good a master, and as good a man,
as the good old city knew, or any other good old city, town, or borough, in the good old world.
Some people laughed to see the alteration in him, but he let them laugh, and little heeded them;
for he was wise enough to know that nothing ever happened on this globe, for good, at which some
people did not have their fill of laughter in the outset; and knowing that such as these would be
blind anyway, he thought it quite as well that they should wrinkle up their eyes in grins, as have
the malady in less attractive forms. His own heart laughed: and that was quite enough for him.

He had no further intercourse with Spirits, but lived upon the Total Abstinence Principle, ever
afterwards; and it was always said of him, that he knew how to keep Christmas well, if any man
alive possessed the knowledge. May that be truly said of us, and all of us! And so, as Tiny Tim
observed, God bless Us, Every One!

The above text is taken from A Christmas Carol by Charles Dickens.

5. A Permutation Cipher

The ideas behind substitution type ciphers forms part of the design of modern symmetric
systems. For example later we shall see that both DES and Rijndael make use of a component
called an S-Box, which is simply a substitution. The other component that is used in modern
symmetric ciphers is based on permutations.

Permutation ciphers have been around for a number of centuries. Here we shall describe the
simplest, which is particularly easy to break. We first fix a permutation group Sn and a permutation

σ ∈ Sn.

It is the value of σ which will be the secret key. As an example suppose we take

σ =
(

1 2 3 4 5
2 4 1 3 5

)
= (1243) ∈ S5.

Now take some plaintext, say
Once upon a time there was a little girl called snow white.

We break the text into chunks of 5 letters
onceu ponat imeth erewa salit tlegi rlcal ledsn owwhi te.

We first pad the message, with some random letters, so that we have a multiple of five letters in
each chunk.

onceu ponat imeth erewa salit tlegi rlcal ledsn owwhi teahb.
Then we take each five-letter chunk in turn and swap the letters around according to our secret
permutation σ. With our example we obtain

coenu npaot eitmh eewra lsiat etgli crall dlsdn wohwi atheb.
We then remove the spaces, so as to hide the value of n, producing the ciphertext

coenunpaoteitmheewralsiatetglicralldlsdnwohwiatheb.
However, breaking a permutation cipher is easy with a chosen plaintext attack, assuming the group
of permutations used (i.e. the value of n) is reasonably small. To attack this cipher we mount a
chosen plaintext attack, and ask one of the parties to encrypt the message
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abcdefghijklmnopqrstuvwxyz,
to obtain the ciphertext

cadbehfigjmknlorpsqtwuxvyz.
We can then deduce that the permutation looks something like

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 . . .
2 4 1 3 5 7 9 6 8 10 12 14 11 13 15 . . .

)
.

We see that the sequence repeats (modulo 5) after every five steps and so the value of n is prob-
ably equal to five. We can recover the key by simply taking the first five columns of the above
permutation.

Chapter Summary

• Many early ciphers can be broken because they do not successfully hide the underlying
statistics of the language.

• Important principles behind early ciphers are those of substitution and permutation.
• Ciphers can either work on blocks of characters via some keyed algorithm or simply consist

of adding some keystream to each plaintext character.
• Ciphers which aimed to get around these early problems often turned out to be weaker

than expected, either due to some design flaw or due to bad key management practices
adopted by operators.

Further Reading

The best book on the history of ciphers is that by Kahn. Kahn’s book is a weighty tome so those
wishing a more rapid introduction should consult the book by Singh. The book by Churchhouse
also gives an overview of a number of historical ciphers.

R. Churchhouse. Codes and Ciphers. Julius Caesar, the Enigma and the Internet. Cambridge
University Press, 2001.

D. Kahn. The Codebreakers: The Comprehensive History of Secret Communication from Ancient
Times to the Internet. Scribner, 1996.

S. Singh. The Codebook: The Evolution of Secrecy from Mary, Queen of Scots to Quantum Cryp-
tography. Doubleday, 2000.


