
Cryptography: An Introduction

(3rd Edition)

Nigel Smart

Sebastian Angel
Chapter 6 — Edited for CIS 331 (cut short)�



CHAPTER 6

Historical Stream Ciphers

Chapter Goals

• To introduce the general model for symmetric ciphers.
• To explain the relation between stream ciphers and the Vernam cipher.
• To examine the working and breaking of the Lorenz cipher in detail.

1. Introduction To Symmetric Ciphers

A symmetric cipher works using the following two transformations

c = ek(m),
m = dk(c)

where
• m is the plaintext,
• e is the encryption function,
• d is the decryption function,
• k is the secret key,
• c is the ciphertext.

It should be noted that it is desirable that both the encryption and decryption functions are public
knowledge and that the secrecy of the message, given the ciphertext, depends totally on the secrecy
of the secret key, k. Although this well-established principle, called Kerckhoffs’ principle, has
been known since the mid-1800s many companies still ignore it. There are instances of companies
deploying secret proprietary encryption schemes which turn out to be insecure as soon as someone
leaks the details of the algorithms. The best schemes will be the ones which have been studied by
a lot of people for a very long time and which have been found to remain secure. A scheme which
is a commercial secret cannot be studied by anyone outside the company.

The above setup is called a symmetric key system since both parties need access to the secret
key. Sometimes symmetric key cryptography is implemented using two keys, one for encryption
and one for decryption. However, if this is the case we assume that given the encryption key it is
easy to compute the decryption key (and vice versa). Later we shall meet public key cryptography
where only one key is kept secret, called the private key, the other key, called the public key is
allowed to be published in the clear. In this situation it is assumed to be computationally infeasible
for someone to compute the private key given the public key.

Returning to symmetric cryptography, a moment’s thought reveals that the number of possible
keys must be very large. This is because in designing a cipher we assume the worst case scenario
and give the attacker the benefit of

• full knowledge of the encryption/decryption algorithm,
• a number of plaintext/ciphertext pairs associated to the target key k.

93



94 6. HISTORICAL STREAM CIPHERS

If the number of possible keys is small then an attacker can break the system using an exhaustive
search. The attacker encrypts one of the given plaintexts under all possible keys and determines
which key produces the given ciphertext. Hence, the key space needs to be large enough to avoid
such an attack. It is commonly assumed that a computation taking 280 steps will be infeasible for
a number of years to come, hence the key space size should be at least 80 bits to avoid exhaustive
search.

The cipher designer must play two roles, that of someone trying to break as well as create a
cipher. These days, although there is a lot of theory behind the design of many ciphers, we still
rely on symmetric ciphers which are just believed to be strong, rather than ones for which we know
a reason why they are strong. All this means is that the best attempts of the most experienced
cryptanalysts cannot break them. This should be compared with public key ciphers, where there
is now a theory which allows us to reason about how strong a given cipher is (given some explicit
computational assumption).

Fig. 1 describes a simple model for enciphering bits, which although simple is quite suited to
practical implementations. The idea of this model is to apply a reversible operation to the plaintext

Figure 1. Simple model for enciphering bits

Plaintext✲ Encryption Ciphertext✲ Decryption Plaintext✲

Random bit stream

✲⊕ ✲❄

Random bit stream

✲ ⊕ ✲❄

to produce the ciphertext, namely combining the plaintext with a ‘random stream’. The recipient
can recreate the original plaintext by applying the inverse operation, in this case by combining the
ciphertext with the same random stream.

This is particularly efficient since we can use the simplest operation available on a computer,
namely exclusive-or ⊕. We saw in Chapter 5 that if the key is different for every message and the
key is as long as the message, then such a system can be shown to be perfectly secure, namely we
have the one-time pad. However, the one-time pad is not practical in many situations.

• We would like to use a short key to encrypt a long message.
• We would like to reuse keys.

Modern symmetric ciphers allow both of these properties, but this is at the expense of losing our
perfect secrecy property. The reason for doing this is because using a one-time pad produces hor-
rendous key distribution problems. We shall see that even using reusable short keys also produces
bad (but not as bad) key distribution problems.

There are a number of ways to attack a bulk cipher, some of which we outline below. We divide
our discussion into passive and active attacks; a passive attack is generally easier to mount than
an active attack.

• Passive Attacks: Here the adversary is only allowed to listen to encrypted messages.
Then he attempts to break the cryptosystem by either recovering the key or determining
some secret that the communicating parties did not want leaked. One common form of
passive attack is that of traffic analysis, a technique borrowed from the army in World
War I, where a sudden increase in radio traffic at a certain point on the Western Front
would signal an imminent offensive.



2. STREAM CIPHER BASICS 95

• Active Attacks: Here the adversary is allowed to insert, delete or replay messages be-
tween the two communicating parties. A general requirement is that an undetected in-
sertion attack should require the breaking of the cipher, whilst the cipher needs to allow
detection and recovery from deletion or replay attacks.

Bulk symmetric ciphers essentially come in two variants: stream ciphers, which operate on one
data item (bit/letter) at a time, and block ciphers, which operate on data in blocks of items (e.g.
64 bits) at a time. In this chapter we look at stream ciphers, we leave block ciphers until Chapter
8.

2. Stream Cipher Basics

Fig. 2 gives a simple explanation of a stream cipher. Notice how this is very similar to our
previous simple model. However, the random bit stream is now produced from a short secret key
using a public algorithm, called the keystream generator.

Figure 2. Stream ciphers

Secret key

Keystream generator
✻

Keystream
101001110

✻

⊕ Ciphertext✲
011011011

Plaintext
110010101 ❄

Thus we have ci = mi ⊕ ki where
• m0,m1, . . . are the plaintext bits,
• k0, k1, . . . are the keystream bits,
• c0, c1, . . . are the ciphertext bits.

This means
mi = ci ⊕ ki

i.e. decryption is the same operation as encryption.
Stream ciphers such as that described above are simple and fast to implement. They allow very

fast encryption of large amounts of data, so they are suited to real-time audio and video signals. In
addition there is no error propagation, if a single bit of ciphertext gets mangled during transit (due
to an attacker or a poor radio signal) then only one bit of the decrypted plaintext will be affected.
They are very similar to the Vernam cipher mentioned earlier, except now the key stream is only
pseudo-random as opposed to truly random. Thus whilst similar to the Vernam cipher they are
not perfectly secure.

Just like the Vernam cipher, stream ciphers suffer from the following problem; the same key
used twice gives the same keystream, which can reveal relationships between messages. For example
suppose m1 and m2 were encrypted under the same key k, then an adversary could work out the
exclusive-or of the two plaintexts without knowing what the plaintexts were

c1 ⊕ c2 = (m1 ⊕ k)⊕ (m2 ⊕ k) = m1 ⊕m2.

Hence, there is a need to change keys frequently either on a per message or on a per session basis.
This results in difficult key management and distribution techniques, which we shall see later how
to solve using public key cryptography. Usually public key cryptography is used to determine



96 6. HISTORICAL STREAM CIPHERS

session or message keys, and then the actual data is rapidly encrypted using either a stream or
block cipher.

The keystream generator above needs to produce a keystream with a number of properties for
the stream cipher to be considered secure. As a bare minimum the keystream should

• Have a long period. Since the keystream ki is produced via a deterministic process from
the key, there will exist a number N such that

ki = ki+N

for all values of i. This number N is called the period of the sequence, and should be large
for the keystream generator to be considered secure.

• Have pseudo-random properties. The generator should produce a sequence which appears
to be random, in other words it should pass a number of statistical random number tests.

• Have large linear complexity. See Chapter 7 for what this means.
However, these conditions are not sufficient. Generally determining more of the sequence from a
part should be computationally infeasible. Ideally, even if one knows the first one billion bits of
the keystream sequence, the probability of guessing the next bit correctly should be no better than
one half.

In Chapter 7 we shall discuss how stream ciphers are created using a combination of simple
circuits called Linear Feedback Shift Registers. But first we will look at earlier constructions using
rotor machines, or in modern notation Shift Registers (i.e. shift registers with no linear feedback).

3. The Lorenz Cipher

The Lorenz cipher was a German cipher from World War Two which was used for strategic
information, as opposed to the tactical and battlefield information encrypted under the Enigma
machine. The Lorenz machine was a stream cipher which worked on streams of bits. However it
did not produce a single stream of bits, it produced five. The reason was due to the encoding of
teleprinter messages used at the time, namely Baudot code.

3.1. Baudot Code. To understand the Lorenz cipher we first need to understand Baudot
code. We all are aware of the ASCII encoding for the standard letters on a keyboard, this uses
seven bits for the data, plus one bit for error detection. Prior to ASCII, indeed as far back as 1870,
Baudot invented an encoding which used five bits of data. This was further developed until, by the
1930’s, it was the standard method of communicating via teleprinter. The data was encoding via
a tape, which consisted of a sequence of five rows of holes/non-holes.

Those of us of a certain age in the United Kingdom can remember the football scores being
sent in on a Saturday evening by teleprinter, and those who are even older can maybe recall the
ticker-tape parades in New York. The ticker-tape was the remains of transmitted messages in
Baudot code. For those who can remember early dial-up modems, they will recall that the speeds
were measured in Baud’s, or characters per second, in memory of Baudot’s invention.

Now five bits does not allow one to encode all the characters that one wants, thus Baudot code
used two possible “states” called letters shift and figures shift. Moving between the two states was
controlled by control characters, a number of other control characters were reserved for things such
as space (SP), carriage return (CR), line feed (LF) or a character which rung the teleprinters bell
(BELL) (such a code still exists in ASCII). The table for Baudot code in the 1930’s is presented in
Table 1.

Thus to transmit the message
Please, Please Help!

one would need to transmit the encoding, which we give in hexadecimal,
16, 12, 01, 03, 05, 01, 1B, 0C, 1F, 04, 16, 12, 01, 03, 05, 01, 04, 14, 01, 12, 16, 1B, 0D.

Sebastian Angel



