CIS 341 Midterm March 5, 2015

Name (printed): __________________________

Pennkey (login id): ______________________

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Academic Integrity in completing this examination.

Signature: ________________________________ Date: _______________________

SOLUTIONS
1. Representing Structured Data (14 points)

This problem is about the representation of various source language data structures (from a C or OCaml) as they might be translated to the LLVM-lite IR we are using for the course projects.

a. Consider the following LLVM IR types:
 (a) \{i64, i64\}
 (b) \{i64, i64\}*
 (c) \{i64*, i64*\}*
 (d) [4 x \{i64, i64\}]*
 (e) \{i64, [0 x i64]\}*
 (f) \[14 x i8\]

For each of the following source language constructs, indicate which one of the above LLVM IR types could best be used as its translation type, or write “none” if none of the types will work. Each answer is one of (a)–(f).

i. Answer: (f) The C string global constant data "hello, world!\00".

ii. Answer: (b) The variable \(p\) in the C program below

 \[
 \text{struct point \{int64_t x; int64_t y\}}
 \]

 \[
 \text{void foo() \{ }
 \text{\quad struct point p;}
 \text{\}}
 \]

iii. Answer: (d) The variable \(p\) in the C program below

 \[
 \text{struct point \{int64_t x; int64_t y\}}
 \]

 \[
 \text{void foo() \{ }
 \text{\quad struct point p[] = \{\{1,2\}, \{3,4\}, \{5,5\}, \{6,7\}\};}
 \text{\}}
 \]

iv. Answer: (e) An OCaml-style length-indexed array \(x\) declared as:

 \[
 \text{let x : int64 array = mkarray (4)}
 \]

v. Answer: (c) The argument \(x\) in the polymorphic (a.k.a. generic) OCaml function:

 \[
 \text{fun (x:'a*'b) -> fst x}
 \]

 (Hint: Clients of this function might need to use Bitcast.)
b. Suppose that the LLVM local `%ptr` has type `%T*` where `%T = { i64, i64*, %T* }`

i. What is the type of `%q` in the following program? (Write “ill typed” if it does not typecheck.)

```plaintext
%q = getelementptr %T* %ptr, i32 0, i32 1
```

Answer: `i64**`

ii. What is the type of `%r` in the following program? (Write “ill typed” if it does not typecheck.)

```plaintext
%r = getelementptr %T* %ptr, i32 0, i32 2, i32 1
```

Answer: ill typed
2. **Lexing, Parsing, and Grammars** (18 points total)

Consider the following grammar of expressions for a language that has C-style preincrement `++e`, postincrement `e++`, and Haskell-style infix string concatenation `e1 ++ e2`, as well as identifiers and parentheses. To the right is an OCaml datatype for representing the abstract syntax.

```
exp  ::=  
  | id                  type exp =  
  | ++exp                | Id of string  
  | exp++                | Pre of exp (* preincrement *)  
  | exp ++ exp           | Pst of exp (* postincrement *)  
  | (exp)                | Cat of exp * exp (* concatenation *)
```

a. (3 points) This is a highly ambiguous grammar. Demonstrate that this is the case by giving three distinct parses of the token sequence `++ a ++ ++ b`. Write your answer using the OCaml notation for the abstract syntax. (You can abbreviate identifiers: write `a` for `Id("a")`, etc.)

Answer: Any three of:

- `Cat(Pst(Pre(a)), b)`
- `Cat(Pre(Pst(a)), b)`
- `Cat(Pre(a), Pre(b))`
b. (4 points) This grammar cannot be disambiguated simply by assigning one associativity and precedence level to the ++ token (because it is used in multiple incompatible ways). One way to disambiguate it by hand is observe that any sequence of ++ tokens and “atomic” expressions (such as identifiers or parenthesized subexpressions) can be written “right associatively”:

- Any initial prefix of ++ tokens is considered to be applications of the Pre operator.
- The remaining token sequence is broken into a non-zero number of “segments”, each of which consists of an atomic expression followed by ++ tokens, which are uses of the Pst operator.
- If there are multiple segments, they are separated by exactly one ++ token, which is considered as a right-associative use of Cat.

For example, the top sequence below would be uniquely parsed as shown by the parenthesized bottom version, where a, b, c, and d are atomic:

\[
++ ++ ++ a ++ b ++ ++ ++ c ++ ++ d ++ ++ \\
++ ++ ++ (a ++ ((b ++ ++) ++ ((c ++) ++ (d ++ ++))))
\]

It turns out that sequences of the form described above can be recognized using a regular expression over the alphabet \{++,E\} (where \(E\) stands for an “atomic” expression). For your reference, Appendix A includes a description of the form of regular expressions for use in this question.

Write down a regular expression that matches exactly these sequences.

Answer:

\[
++^*((E++)++)^*E++^*
\]

c. (3 points) According to the description in part (b) above, what are the relative precedence levels of the three different operators in the disambiguated grammar? Write one of High, Medium, or Low next to each as appropriate:

preincrement ++e: Low
postincrement e++: High
concatenation e ++ e: Medium
d. (8 points) Because regular languages are included in LR(1) languages, we know that it is possible to write down an unambiguous context-free grammar that parses the exp grammar. Write down such a grammar below, where the initial symbol is e_0. Use the four terminal tokens $++$, $()$, ID and feel free to add as many nonterminals as necessary.

\[
\begin{align*}
 &e_0: \\
 &\quad | \quad ++ \text{=}e_0 \\
 &\quad | \quad e_1 \\
 &e_1: \\
 &\quad | \quad e_2 \quad ++ \text{=}e_1 \\
 &\quad | \quad e_2 \\
 &e_2: \\
 &\quad | \quad e_2 \quad ++ \\
 &\quad | \quad e_3 \\
 &e_3: \\
 &\quad | \quad \text{ID} \\
 &\quad | \quad (\text{=}e \text{)}
\end{align*}
\]
3. LLVM IR (15 points)

This problem refers to the C source function `m` and its corresponding (unoptimized) LLVM code, which are found in Appendix B. You may carefully tear off that page to use as a reference.

a. (3 points) LLVM IR semantics. Consider the call to `m` in the following instruction:

\[
\%\text{ans} = \text{call i64 @m(i64 -3, i64 5)}
\]

i. Circle the value of %6 during this execution of @m

\[\begin{array}{cccc}
-3 & 1 & 3 & 5 \\
\end{array}\]

- a pointer to 3
- a pointer to -3
- a pointer to 5

ii. Circle the value of %9 during this execution of @m

\[\begin{array}{cccc}
-3 & 1 & 3 & 5 \\
\end{array}\]

- a pointer to 3
- a pointer to -3
- a pointer to 5

iii. Circle the value of %2 at line 18 during this execution of @m

\[\begin{array}{cccc}
-3 & 1 & 3 & 5 \\
\end{array}\]

- a pointer to 3
- a pointer to -3
- a pointer to 5

b. (5 points) Observe that in the source definition of `m`, the argument `b` is unmodified, and its address is never taken. These facts suggest that we can optimize the LLVM code to avoid using `alloca` for `b` and instead work with the temporary `%b` directly.

Perform that optimization by hand, and complete the template below to show the resulting code, which should be semantically equivalent to the original program. There are no changes necessary in the block with label 5, and we have given you the last parts of each of the remaining blocks:

Answer:

\[
\text{define i64 @m(i64 %a, i64 %b) {}
\]

\[
\%1 = \text{alloca i64}
\]

\[
\text{store i64 %a, i64* %1}
\]

\[
\%3 = \text{load i64* %1}
\]

\[
\%4 = \text{icmp slt i64 %3, 0}
\]

\[
\text{br i1 %4, label %5, label %8}
\]

\[
\text{5:}
\]

\[
\%6 = \text{load i64* %1}
\]

\[
\%7 = \text{sub i64 0, %6}
\]

\[
\text{store i64 %7, i64* %1}
\]

\[
\text{br label %8}
\]

\[
\text{8:}
\]

\[
\%9 = \text{load i64* %1}
\]

\[
\%11 = \text{mul i64 %9, %b}
\]

\[
\text{ret i64 %11}
\]
c. (3 points) If we naively try to perform the optimization described in part (b) to the other argument \(a \) of \(m \) (leaving \(b \) alone), we might end up with the following incorrect LLVM IR program:

```
define i64 @m(i64 %a, i64 %b) {
  %2 = alloca i64
  store i64 %b, i64 * %2
  %4 = icmp slt i64 %a, 0
  br i1 %4 , label %5 , label %8

  5:
  %a = sub i64 0, %a ; <-- flaw
  br label %8

  8:
  %10 = load i64 * %2
  %11 = mul i64 %a, %10
  ret i64 %11
}
```

In one sentence, describe the flaw indicated in the program above.

Answer: It breaks the SSA invariant that each local is defined exactly once.

d. (4 points) Suppose we extend the LLVM IR with a *conditional move* command that sets \%id to one of \(op2 \), if \(op1 \) is true, or \(op3 \), if \(op1 \) is false:

\[
%id = \text{select } i1 \text{ } op1, \text{ } i64 \text{ } op2, \text{ } i64 \text{ } op3
\]

Use this instruction to implement an optimized version of \(m \) that needs only four instructions (other than the terminating \text{ret}):

Answer:

```
define i64 @m(i64 %a, i64 %b) {
  %1 = icmp slt i64 %a, 0
  %2 = sub i64 0, %a
  %3 = select i1 %1, i64 %2, i64 %a
  %4 = mul i64 %3, %b
  ret i64 %4
}
```
4. **Compilation and Calling Conventions** (15 points)

Recall that according to the x86-64 calling conventions that we have been using, the first two quad-sized arguments to a function are passed in registers %rdi and %rsi, respectively, and the return value is returned in %rax. %rbp is a *callee-save* register and %rsp is *caller-save*. In X86lite syntax, the source operand comes before the destination, as in movq %src, %dest.

Consider the following LLVM IR program, in which bar calls foo.

```llvm
define i64 @foo ( i64 %x, i64 %y) {
  % ans = add i64 %x, %y
  ret i64 % ans
}
define i64 @bar () {
  %1 = call i64 @foo ( i64 12, i64 34)
  ret i64 %1
}
```

a. (6 points) For each of the following possible X86lite implementations of bar, indicate whether it is “correct” (*i.e.* that it correctly implements the calling conventions), or write “incorrect” and briefly explain (in the margins) why it is wrong.

(A)

```asm
bar:
    pushq %rbp
    movq %rsp, %rbp
    subq $8, %rsp
    movq $12, %rax
    movq %rax, %rdi
    movq $34, %rax
    movq %rax, %rsi
    callq foo
    movq %rax, -8(%rbp)
    movq -8(%rbp), %rax
    movq %rbp, %rsp
    popq %rbp
    retq
```

(B)

```asm
bar:
    pushq %rbp
    movq %rsp, %rbp
    movq $12, %rdi
    movq $34, %rsi
    callq foo
    movq %rbp, %rsp
    popq %rbp
    retq
```

(C)

```asm
bar:
    movq $12, %rdi
    movq $34, %rsi
    callq foo
    retq
```

Answer: They are all correct.
b. (6 points) A tailcall at the LLVM IR level is a use of a call instruction followed immediately by a return of the result of the call (or a void return if the called function has void return type). For example, the function bar from part (a) of this problem makes a tailcall to foo, since bar immediately returns %1, which is foo’s result.

A tailcall in which all of the function arguments fit in registers can be optimized to just a jmp—there is no need to use the x86 callq or retq instructions at all. Tailcall optimization effectively turns a recursive function into a loop! It reduces the need for $O(n)$ stack space to $O(1)$, where n is the recursion depth. However, some care must still be taken to follow the calling conventions. For each of the following possible x86-lite tailcall-optimized implementations of bar, indicate whether it is “correct” (i.e. that it correctly implements the calling conventions), or write “incorrect” and briefly explain (in the margins) why it is wrong.

(A)
```
bar:
pushq %rbp
movq %rsp, %rbp
movq $12, %rdi
movq $34, %rsi
jmp foo
```

(B)
```
bar:
movq $12, %rdi
movq $34, %rsi
jmp foo
```

(C)
```
bar:
movq $12, %rdi
movq $34, %rsi
popq %rbp
jmp foo
```

Answer: (B) is correct. (A) and (C) violate callee-save for %rbp because when bar is called they don’t restore it on exit.

c. (3 points) According to the x86 calling conventions we’ve been following, function arguments seven and higher are pushed to the stack, which is cleaned up by the caller after the callee returns. Briefly explain how this interacts with tailcall optimization.

Answer: Caller-cleanup arguments prevent tailcall optimization because the control never returns to the caller, and so the stack pointer isn’t restored properly. (Caller-cleanup arguments do support functions with a variable number of arguments, like C’s printf, however. Such var-arg functions are harder to support with callee-cleanup calling conventions.)
5. **Scope Checking** (18 points)

In this problem we will consider scope checking (a simple subset of) OCaml programs. The grammar for this subset of OCaml is given by the syntactic categories below:

\[
\text{exp} ::= \text{Expressions} \mid x \mid f \mid \text{int} \mid \text{exp}_1 + \text{exp}_2 \mid \text{exp}_1 \text{exp}_2 \mid \text{let } x = \text{exp}_1 \text{ in } \text{exp}_2 \mid (\text{exp})
\]

\[
\text{prog} ::= \text{Programs} \mid ;; \text{exp} \mid \text{let } x = \text{exp} \text{ prog} \mid \text{let } f x = \text{exp} \text{ prog}
\]

Scoping contexts for this language consist of comma-separated lists of variable and function names:

\[
\text{G} ::= \cdot \mid x, \text{G} \mid f, \text{G}
\]

Scope checking for expressions is defined by the following inference rules, which use judgments of the form \(\text{G} \vdash \text{exp} \). Recall that the notation \(x \in \text{G} \) means that \(x \) occurs in the context list \(\text{G} \).

\[
\begin{align*}
\frac{x \in \text{G}}{\text{G} \vdash x} & \quad \text{[VARX]} \quad \frac{f \in \text{G}}{\text{G} \vdash f} \quad \text{[VARF]} \quad \frac{\text{G} \vdash \text{exp}_1 \quad \text{G} \vdash \text{exp}_2}{\text{G} \vdash \text{exp}_1 + \text{exp}_2} \quad \text{[ADD]} \\
\frac{\text{G} \vdash \text{exp}_1 \quad \text{G} \vdash \text{exp}_2}{\text{G} \vdash \text{exp}_1 \text{exp}_2} & \quad \text{[APP]} \\
\frac{\text{G} \vdash \text{exp}_1 \quad \text{G} \vdash \text{exp}_2 \quad x \in \text{G}}{\text{G} \vdash \text{let } x = \text{exp}_1 \text{ in } \text{exp}_2} & \quad \text{[LET]}
\end{align*}
\]

Scope checking for programs is defined by these three inference rules, which use judgments of the form \(\text{G} \vdash \text{prog} \).

\[
\begin{align*}
\frac{\text{G} \vdash \text{exp}}{\text{G} \vdash ;; \text{exp}} & \quad \text{[EXP]} \\
\frac{\text{G} \vdash \text{exp} \quad \text{G} \vdash \text{prog}}{\text{G} \vdash \text{let } x = \text{exp} \text{ prog}} & \quad \text{[LETX]} \\
\frac{\text{G} \vdash \text{exp} \quad \text{G} \vdash \text{prog}}{\text{G} \vdash \text{let } f x = \text{exp} \text{ prog}} & \quad \text{[LETF]}
\end{align*}
\]

A program \(\text{prog} \) is considered to be well-scoped exactly when it is possible to derive the judgment in the empty context: \(\cdot \vdash \text{prog} \).
a. Consider the following program:

```plaintext
let f x = 341
let g y = (let z = f y in z) + y
;; g 3
```

It is well-scoped, as shown by the following (partial) derivation that has some missing sub-derivations as marked by names \(\text{D1}\), \(\text{D2}\), and \(\text{D3}\).

\[
\begin{array}{c}
\text{D1:} \quad f, \cdot \vdash \text{let } g y = (\text{let } z = f y \text{ in } z) + y \\
\quad \quad \vdash \text{g 3}
\end{array}
\]

\[
\begin{array}{c}
\text{D2:} \quad g.f, \cdot \vdash \text{g 3}
\end{array}
\]

\[
\begin{array}{c}
\text{D3:} \quad \vdash \text{let } f x = 341 \\
\quad \quad \vdash \text{let } g y = (\text{let } z = f y \text{ in } z) + y \\
\quad \quad \vdash \text{g 3}
\end{array}
\]

i. (3 points) Which of the following derivation trees belongs in the spot marked \(\text{D1}\)?

a. \(\frac{x \in x, \cdot}{x, \cdot \vdash x} \) \(\text{VARX} \)

b. \(\frac{}{\vdash 341} \) \(\text{INT} \)

c. \(\frac{x, \cdot \vdash 341}{x, \cdot \vdash g 3} \) \(\text{INT} \)

d. \(\frac{f, \cdot \vdash 341}{g, f, \cdot \vdash 3} \) \(\text{INT} \)

ii. (3 points) Which of the following derivation trees belongs in the spot marked \(\text{D2}\)?

a. \(\frac{g \in g, f, \cdot \quad
\text{g.f, \cdot \vdash g}}{g, f, \cdot \vdash 3} \) \(\text{APP} \)

b. \(\frac{g \in g, \cdot \quad
\text{g, \cdot \vdash g}}{g, \cdot \vdash 3} \) \(\text{APP} \)

c. \(\frac{g \in f, g, \cdot \quad
\text{f.g, \cdot \vdash g}}{f, g, \cdot \vdash 3} \) \(\text{APP} \)

d. \(\frac{g \in y, g, f, \cdot \quad
\text{y.g.f, \cdot \vdash g}}{y, g, f, \cdot \vdash 3} \) \(\text{APP} \)
iii. (12 points) In the space below, draw the missing derivation tree marked by D3. Be sure to label the uses of each inference rule as in the tree above.

Answer:

\[
\frac{f \in y, f, \cdot}{y, f, \cdot \vdash f} \quad \frac{y \in y, f, \cdot}{y, f, \cdot \vdash y} \quad \frac{z \in z, y, f, \cdot}{z, y, f, \cdot \vdash z} \quad \frac{y \in y, f, \cdot}{y, f, \cdot \vdash y} \\
\frac{y, f, \cdot \vdash f \ y}{y, f, \cdot \vdash \text{let } z = f \ y \ \text{in } z} \\
\frac{y, f, \cdot \vdash \text{let } z = f \ y \ \text{in } z \ + \ y}{y, f, \cdot \vdash (\text{let } z = f \ y \ \text{in } z) \ + \ y}
\]
1 Appendix A: Regular Expressions

Regular expressions over an alphabet \mathcal{A} are defined by the following grammar:

\[
\text{rexp} ::= \\
\quad \epsilon \quad \text{empty string} \\
\quad a \quad a \in \mathcal{A} \quad \text{alphabet symbol} \\
\quad \text{rexp rexp} \quad \text{sequential concatenation} \\
\quad \text{rexp}^* \quad \text{Kleene-star (zero or more repetitions)} \\
\quad \text{rexp} | \text{rexp} \quad \text{alternative choice} \\
\quad (\text{rexp})
\]
2 Appendix B: LLVM

A C program that computes the a’s absolute value times b.

```c
int64_t m(int64_t a, int64_t b) {
    if (a < 0) {
        a = -a;
    }
    return a * b;
}
```

Corresponding LLVM IR coded, created using `clang` with no optimizations turned on:

```llvm
define i64 @m(i64 %a, i64 %b) {
  %1 = alloca i64
  %2 = alloca i64
  store i64 %a, i64* %1
  store i64 %b, i64* %2
  %3 = load i64* %1
  %4 = icmp slt i64 %3 , 0 ; 'slt' is signed less than
  br i1 %4 , label %5 , label %8

  %5:
  %6 = load i64* %1
  %7 = sub i64 0, %6
  store i64 %7 , i64* %1
  br label %8

  %8:
  %9 = load i64* %1
  %10 = load i64* %2
  %11 = mul i64 %9 , %10
  ret i64 %11
}
```