CIS 341: COMPILERS
Announcements

• **Homework 3**: Compiling LLVMlite
 • **Goal**:
 – Familiarize yourself with (a subset of) the LLVM IR
 – Implement a translation down to (inefficient) X86lite
 • **Due**: Thursday, Feb. 23rd

• **MIDTERM EXAM**
 – Thursday, March 2nd in class

it is now too late to START EARLY!!
Creating an abstract representation of program syntax.

PARSING
Today: Parsing

Source Code
(Character stream)
if (b == 0) { a = 1; }

Token stream:
if (b == 0) { a = 0 ; }

Abstract Syntax Tree:
If
 Eq
 b
 Assn
 0
 a
 1
 None

Intermediate code:
11:
 %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %l2, label %l3
12:
 store i64* %a, 1
 br label %l3
13:

Assembly Code
11:
 cmpq %eax, $0
 jeq 12
 jmp 13
12:
 ...

Lexical Analysis
Parsing
Analysis & Transformation
Backend
\{
 if (b == 0) a = b;
 while (a != 1) {
 print_int(a);
 a = a - 1;
 }
\}

Source input

Abstract Syntax tree
Syntactic Analysis (Parsing): Overview

- **Input:** stream of tokens (generated by lexer)
- **Output:** abstract syntax tree

Strategy:
- Parse the token stream to traverse the "concrete" syntax
- During traversal, build a tree representing the "abstract" syntax

Why abstract? Consider these three *different* concrete inputs:

\[
\begin{align*}
& a + b \\
& (a + ((b))) \\
& (((a) + (b)))
\end{align*}
\]

Same abstract syntax tree

Note: parsing doesn’t check many things:
- Variable scoping, type agreement, initialization, …
Specifying Language Syntax

• First question: how to describe language syntax precisely and conveniently?
• Last time: we described tokens using regular expressions
 – Easy to implement, efficient DFA representation
 – Why not use regular expressions on tokens to specify programming language syntax?

• Limits of regular expressions:
 – DFA’s have only finite # of states
 – So… DFA’s can’t “count”
 – For example, consider the language of all strings that contain balanced parentheses – easier than most programming languages, but not regular.

• So: we need more expressive power than DFA’s
CONTEXT FREE GRAMMARS
Context-free Grammars

- Here is a specification of the language of balanced parens:

\[
S \rightarrow (S)S \\
S \rightarrow \varepsilon
\]

- The definition is *recursive* – S mentions itself.

- Idea: “derive” a string in the language by starting with S and rewriting according to the rules:
 - Example: \(S \rightarrow (S)S \rightarrow ((S)S)S \rightarrow ((\varepsilon)S)S \rightarrow ((\varepsilon)S)\varepsilon \rightarrow ((\varepsilon)\varepsilon)\varepsilon = () \)

- You can replace the “nonterminal” S by its definition anywhere
- A context-free grammar accepts a string iff there is a derivation from the start symbol

And, since we’re writing this description in English, we are careful distinguish the meta-meta-language (e.g. words) from the meta-language and object-language (e.g. symbols) by using quotes.
A Context-free Grammar (CFG) consists of
- A set of *terminals* (e.g., a lexical token or ε)
- A set of *nonterminals* (e.g., S and other syntactic variables)
- A designated nonterminal called the *start symbol*
- A set of productions: $\text{LHS} \rightarrow \text{RHS}$
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals

Example: The balanced parentheses language:

- $S \rightarrow (S)S$
- $S \rightarrow \varepsilon$

How many terminals? How many nonterminals? Productions?
Another Example: Sum Grammar

• A grammar that accepts parenthesized sums of numbers:

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
\]

e.g.: \((1 + 2 + (3 + 4)) + 5\)

• Note the vertical bar ‘|’ is shorthand for multiple productions:

\[
\begin{align*}
S & \rightarrow E + S \\
S & \rightarrow E \\
E & \rightarrow \text{number} \\
E & \rightarrow (S)
\end{align*}
\]

4 productions
2 nonterminals: S, E
4 terminals: (,), +, number
Start symbol: S
Derivations in CFGs

- Example: derive \((1 + 2 + (3 + 4)) + 5\)
- \(S \rightarrow E + S\)
 \(\rightarrow (S) + S\)
 \(\rightarrow (E + S) + S\)
 \(\rightarrow (1 + S) + S\)
 \(\rightarrow (1 + E + S) + S\)
 \(\rightarrow (1 + 2 + S) + S\)
 \(\rightarrow (1 + 2 + E) + S\)
 \(\rightarrow (1 + 2 + (S)) + S\)
 \(\rightarrow (1 + 2 + (E + S)) + S\)
 \(\rightarrow (1 + 2 + (3 + S)) + S\)
 \(\rightarrow (1 + 2 + (3 + E)) + S\)
 \(\rightarrow (1 + 2 + (3 + 4)) + S\)
 \(\rightarrow (1 + 2 + (3 + 4)) + E\)
 \(\rightarrow (1 + 2 + (3 + 4)) + 5\)

Grammar Rules:
- \(S \rightarrow E + S \mid E\)
- \(E \rightarrow \text{number} \mid (S)\)

For arbitrary strings \(\alpha, \beta, \gamma\) and production rule \(A \rightarrow \beta\), a single step of the derivation is:

\[\alpha A \gamma \rightarrow \alpha \beta \gamma\]

(substitute \(\beta\) for an occurrence of \(A\))

In general, there are many possible derivations for a given string

Note: Underline indicates symbol being expanded.
From Derivations to Parse Trees

- Tree representation of the derivation
- Leaves of the tree are terminals
 - In-order traversal yields the input sequence of tokens
- Internal nodes: nonterminals
- No information about the order of the derivation steps

• \((1 + 2 + (3 + 4)) + 5\)

S \rightarrow E + S \mid E
E \rightarrow \text{number} \mid (S)
From Parse Trees to Abstract Syntax

- **Parse tree**: “concrete syntax”

- **Abstract syntax tree (AST)**: Hides, or *abstracts*, unneeded information.

\[
\begin{align*}
S & \rightarrow E + S \\
E & \rightarrow S \\
E & \rightarrow E + S \\
E & \rightarrow 1 \\
E & \rightarrow 2 \\
E & \rightarrow (S) \\
E & \rightarrow E + S \\
E & \rightarrow 3 \\
E & \rightarrow 4
\end{align*}
\]
Derivation Orders

• Productions of the grammar can be applied in any order.
• There are two standard orders:
 – *Leftmost derivation*: Find the left-most nonterminal and apply a production to it.
 – *Rightmost derivation*: Find the right-most nonterminal and apply a production there.

• Note that both strategies (and any other) yield the same parse tree!
 – Parse tree doesn’t contain the information about what order the productions were applied.
Example: Left- and rightmost derivations

- Leftmost derivation:
 - \(S \rightarrow E + S \)
 - \(\rightarrow (S) + S \)
 - \(\rightarrow (E + S) + S \)
 - \(\rightarrow (1 + S) + S \)
 - \(\rightarrow (1 + E + S) + S \)
 - \(\rightarrow (1 + 2 + S) + S \)
 - \(\rightarrow (1 + 2 + E) + S \)
 - \(\rightarrow (1 + 2 + (S)) + S \)
 - \(\rightarrow (1 + 2 + (E + S)) + S \)
 - \(\rightarrow (1 + 2 + (3 + S)) + S \)
 - \(\rightarrow (1 + 2 + (3 + E)) + S \)
 - \(\rightarrow (1 + 2 + (3 + 4)) + S \)
 - \(\rightarrow (1 + 2 + (3 + 4)) + E \)
 - \(\rightarrow (1 + 2 + (3 + 4)) + 5 \)

- Rightmost derivation:
 - \(S \rightarrow E + S \)
 - \(\rightarrow E + E \)
 - \(\rightarrow E + 5 \)
 - \(\rightarrow (S) + 5 \)
 - \(\rightarrow (E + S) + 5 \)
 - \(\rightarrow (E + E + S) + 5 \)
 - \(\rightarrow (E + E + E) + 5 \)
 - \(\rightarrow (E + E + (S)) + 5 \)
 - \(\rightarrow (E + E + (E + S)) + 5 \)
 - \(\rightarrow (E + E + (3 + 4)) + 5 \)
 - \(\rightarrow (E + E + (3 + 4)) + 5 \)
 - \(\rightarrow (1 + 2 + (3 + 4)) + 5 \)
Loops and Termination

• Some care is needed when defining CFGs
• Consider:

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow S
\end{align*}
\]

– This grammar has nonterminal definitions that are “nonproductive”. (i.e. they don’t mention any terminal symbols)
– There is no finite derivation starting from S, so the language is empty.

• Consider:

\[
S \rightarrow (S)
\]

– This grammar is productive, but again there is no finite derivation starting from S, so the language is empty.

• Easily generalize these examples to a “chain” of many nonterminals, which can be harder to find in a large grammar

• Upshot: be aware of “vacuously empty” CFG grammars.
 – Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols.
Associativity, ambiguity, and precedence.
Consider the input: \[1 + 2 + 3 \]

Leftmost derivation:
\[
S \rightarrow E + S \\
\rightarrow 1 + S \\
\rightarrow 1 + E + S \\
\rightarrow 1 + 2 + S \\
\rightarrow 1 + 2 + E \\
\rightarrow 1 + 2 + 3
\]

Rightmost derivation:
\[
S \rightarrow E + S \\
\rightarrow E + E + S \\
\rightarrow E + E + E \\
\rightarrow E + E + 3 \\
\rightarrow E + 2 + 3 \\
\rightarrow 1 + 2 + 3
\]

Parse Tree
Associativity

• This grammar makes ‘+’ right associative…
• The abstract syntax tree is the same for both $1 + 2 + 3$ and $1 + (2 + 3)$
• Note that the grammar is right recursive…

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S)
\]

• How would you make ‘+’ left associative?
• What are the trees for “$1 + 2 + 3$”?
Ambiguity

• Consider this grammar:

\[
S \mapsto S + S \mid (S) \mid \text{number}
\]

• Claim: it accepts the same set of strings as the previous one.

• What’s the difference?

• Consider these two leftmost derivations:

 - \[S \mapsto S + S \mapsto 1 + S \mapsto 1 + S + S \mapsto 1 + 2 + S \mapsto 1 + 2 + 3\]
 - \[S \mapsto S + S \mapsto S + S + S \mapsto 1 + S + S \mapsto 1 + 2 + S \mapsto 1 + 2 + 3\]

• One derivation gives left associativity, the other gives right associativity to ‘+’
 - Which is which?
Why do we care about ambiguity?

- The ‘+’ operation is associative, so it doesn’t matter which tree we pick. Mathematically, \(x + (y + z) = (x + y) + z \)
 - But, some operations aren’t associative. Examples?
 - Some operations are only left (or right) associative. Examples?

- Moreover, if there are multiple operations, ambiguity in the grammar leads to ambiguity in their precedence

- Consider:

 \[
 S \rightarrow S + S \mid S \times S \mid (S) \mid \text{number}
 \]

- Input: \(1 + 2 \times 3 \)
 - One parse = \((1 + 2) \times 3 = 9\)
 - The other = \(1 + (2 \times 3) = 7\)

\[
\begin{align*}
&+ &\times \\
&3 &3 \\
\end{align*}
\]

vs.

\[
\begin{align*}
&+ &\times \\
&1 &2 3 \\
\end{align*}
\]
Eliminating Ambiguity

• We can often eliminate ambiguity by adding nonterminals and allowing recursion only on the left (or right).
• Higher-precedence operators go farther from the start symbol.
• Example:

 \[
 S \rightarrow S + S \mid S * S \mid (S) \mid \text{number}
 \]

• To disambiguate:
 – Decide (following math) to make ‘*’ higher precedence than ‘+’
 – Make ‘+’ left associative
 – Make ‘*’ right associative

• Note:
 – \(S_2 \) corresponds to ‘atomic’ expressions

 \[
 \begin{align*}
 S_0 & \rightarrow S_0 + S_1 \mid S_1 \\
 S_1 & \rightarrow S_2 * S_1 \mid S_2 \\
 S_2 & \rightarrow \text{number} \mid (S_0)
 \end{align*}
 \]
Context Free Grammars: Summary

• Context-free grammars allow concise specifications of programming languages.
 – An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree)
 – Ambiguity can (often) be removed by encoding precedence and associativity in the grammar.

• Even with an unambiguous CFG, there may be more than one derivation
 – Though all derivations correspond to the same abstract syntax tree.

• Still to come: finding a derivation
 – But first: menhir
DEM0: BOOLEAN LOGIC

parser.mly, lexer.mll, range.ml, ast.ml, main.ml