Announcements

• Reminder: HW3 LLVM backend
 – Due: TONIGHT!

• Midterm Exam: March 2nd in class!
 – Coverage: x86 / calling conventions / IRs / LLVM / Lexing / Parsing
 – Note: example exams covered more topics

 * Dr. Zdancewic will be out of town on the exam day

• HW4: Parsing & basic code generation
 – Available soon
 – Due: After break
Searching for derivations.
A Context-free Grammar (CFG) consists of:

- A set of *terminals* (e.g., a token or ε)
- A set of *nonterminals* (e.g., S and other syntactic variables)
- A designated nonterminal called the *start symbol*.
- A set of productions: $\text{LHS} \rightarrow \text{RHS}$
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals

Example: The balanced parentheses language:

- $S \rightarrow (S)S$
- $S \rightarrow \varepsilon$

How many terminals? How many nonterminals? Productions?
Consider finding left-most derivations

- Look at only one input symbol at a time.

S \Rightarrow E + S \mid E
E \Rightarrow \text{number} \mid (S)

<table>
<thead>
<tr>
<th>Partly-derived String</th>
<th>Look-ahead</th>
<th>Parsed/Unparsed Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>\Rightarrow E + S</td>
<td>(</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>\Rightarrow (S) + S</td>
<td>1</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>\Rightarrow (E + S) + S</td>
<td>1</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>\Rightarrow (1 + S) + S</td>
<td>2</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>\Rightarrow (1 + E + S) + S</td>
<td>2</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>\Rightarrow (1 + 2 + S) + S</td>
<td>(</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>\Rightarrow (1 + 2 + E) + S</td>
<td>(</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>\Rightarrow (1 + 2 + (S)) + S</td>
<td>3</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>\Rightarrow (1 + 2 + (E + S)) + S</td>
<td>3</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>\Rightarrow ...</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
There is a problem

- We want to decide which production to apply based on the look-ahead symbol.
- But, there is a choice:

 $S \rightarrow E \rightarrow (S) \rightarrow (E) \rightarrow (1)$

 vs.

 $S \rightarrow E + S \rightarrow (S) + S \rightarrow (E) + S \rightarrow (1) + S \rightarrow (1) + E \rightarrow (1) + 2$

- Given the look-ahead symbol: ‘(‘ it isn’t clear whether to pick $S \rightarrow E$ or $S \rightarrow E + S$ first.
LL(1) GRAMMARS
Grammar is the problem

- Not all grammars can be parsed “top-down” with only a single lookahead symbol.
- **Top-down**: starting from the start symbol (root of the parse tree) and going down

- LL(1) means
 - **Left-to-right scanning**
 - **Left-most derivation**,
 - 1 lookahead symbol

- This language isn’t “LL(1)”
- Is it LL(k) for some k?

- What can we do?
Making a grammar LL(1)

- **Problem:** We can’t decide which S production to apply until we see the symbol after the first expression.
- **Solution:** “Left-factor” the grammar. There is a common S prefix for each choice, so add a new non-terminal S’ at the decision point:

\[
\begin{align*}
S & \rightarrow E + S \mid E \\
E & \rightarrow \text{number} \mid (S) \\
S' & \rightarrow \varepsilon \\
S' & \rightarrow + S \\
E & \rightarrow \text{number} \mid (S)
\end{align*}
\]

- Also need to eliminate left-recursion somehow. Why?
- Consider:

\[
\begin{align*}
S & \rightarrow S + E \mid E \\
E & \rightarrow \text{number} \mid (S)
\end{align*}
\]
LL(1) Parse of the input string

- Look at only one input symbol at a time.

<table>
<thead>
<tr>
<th>Partly-derived String</th>
<th>Look-ahead</th>
<th>Parsed/Unparsed Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>(</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
<tr>
<td>$\Rightarrow E S'$</td>
<td>(</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
<tr>
<td>$\Rightarrow (S) S'$</td>
<td>1</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
<tr>
<td>$\Rightarrow (E S') S'$</td>
<td>1</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
<tr>
<td>$\Rightarrow (1 S') S'$</td>
<td>+</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
<tr>
<td>$\Rightarrow (1 + S) S'$</td>
<td>2</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
<tr>
<td>$\Rightarrow (1 + E S') S'$</td>
<td>2</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
<tr>
<td>$\Rightarrow (1 + 2 S') S'$</td>
<td>+</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
<tr>
<td>$\Rightarrow (1 + 2 + S) S'$</td>
<td>(</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
<tr>
<td>$\Rightarrow (1 + 2 + E S') S'$</td>
<td>(</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
<tr>
<td>$\Rightarrow (1 + 2 + (S)S') S'$</td>
<td>3</td>
<td>$(1 + 2 + (3 + 4)) + 5$</td>
</tr>
</tbody>
</table>
Predictive Parsing

- Given an LL(1) grammar:
 - For a given nonterminal, the lookahead symbol uniquely determines the production to apply.
 - Top-down parsing = predictive parsing
 - Driven by a predictive parsing table:
 nonterminal * input token \rightarrow production

<table>
<thead>
<tr>
<th></th>
<th>number</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$ \ (EOF)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>\rightarrow S$</td>
<td></td>
<td></td>
<td>\rightarrow S$</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>\rightarrow E S’</td>
<td>\rightarrow E S’</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S’</td>
<td>\rightarrow + S</td>
<td>\rightarrow ε</td>
<td>\rightarrow ε</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>\rightarrow num.</td>
<td>\rightarrow (S)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Note: it is convenient to add a special end-of-file token $\$ and a start symbol T (top-level) that requires $\$.
How do we construct the parse table?

• Consider a given production: \(A \rightarrow \gamma \)
• Construct the set of all input tokens that may appear *first* in strings that can be derived from \(\gamma \)
 – Add the production \(\rightarrow \gamma \) to the entry (A, token) for each such token.
• If \(\gamma \) can derive \(\varepsilon \) (the empty string), then we construct the set of all input tokens that may *follow* the nonterminal A in the grammar.
 – Add the production \(\rightarrow \gamma \) to the entry (A, token) for each such token.

• Note: if there are two different productions for a given entry, the grammar is not LL(1)
• First(T) = First(S)
• First(S) = First(E)
• First(S’) = { + }
• First(E) = { number, ‘(‘ }

• Follow(S’) = Follow(S)
• Follow(S) = { $, ‘)’ } \cup Follow(S’)

Note: we want the least solution to this system of set equations… a fixpoint computation. More on these later in the course.

<table>
<thead>
<tr>
<th></th>
<th>number</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$ (EOF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>\rightarrow S$</td>
<td></td>
<td>\rightarrow S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>\rightarrow E S’</td>
<td></td>
<td>\rightarrow E S’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S’</td>
<td></td>
<td>\rightarrow + S</td>
<td></td>
<td>\rightarrow \epsilon</td>
<td>\rightarrow \epsilon</td>
</tr>
<tr>
<td>E</td>
<td>\rightarrow num.</td>
<td></td>
<td>\rightarrow (S)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Converting the table to code

• Define \(n \) mutually recursive functions
 – one for each nonterminal \(A \): \(\text{parse}_A \)
 – The type of \(\text{parse}_A \) is \(\text{unit} \rightarrow \text{ast} \) if \(A \) is not an auxiliary nonterminal
 – Parse functions for auxiliary nonterminals (e.g. \(S' \)) take extra ast’s as inputs, one for each nonterminal in the “factored” prefix.

• Each function “peeks” at the lookahead token and then follows the production rule in the corresponding entry.
 – Consume terminal tokens from the input stream
 – Call \(\text{parse}_X \) to create sub-tree for nonterminal \(X \)
 – If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s. (The auxiliary rule is responsible for creating the ast after looking at more input.)
 – Otherwise, this function builds the ast tree itself and returns it.
Hand-generated LL(1) code for the table above.

<table>
<thead>
<tr>
<th></th>
<th>number</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$ (EOF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>$T \rightarrow S S$</td>
<td></td>
<td>$T \rightarrow S S$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>$T \rightarrow E S'$</td>
<td></td>
<td>$T \rightarrow E S'$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S'</td>
<td>$T \rightarrow E S'$</td>
<td>$T \rightarrow E S'$</td>
<td></td>
<td>$T \rightarrow \epsilon$</td>
<td>$T \rightarrow \epsilon$</td>
</tr>
<tr>
<td>E</td>
<td>$T \rightarrow \text{num.}$</td>
<td></td>
<td></td>
<td>$T \rightarrow (S)$</td>
<td></td>
</tr>
</tbody>
</table>

DEMO: PARSER.ML
LL(1) Summary

• Top-down parsing that finds the leftmost derivation.
• Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursive-descent parser

• Problems:
 – Grammar must be LL(1)
 – Can extend to LL(k) (it just makes the table bigger)
 – Grammar cannot be left recursive (parser functions will loop!)

• Is there a better way?
LR GRAMMARS
Bottom-up Parsing (LR Parsers)

• LR(k) parser:
 – Left-to-right scanning
 – Rightmost derivation
 – k lookahead symbols

• LR grammars are more expressive than LL
 – Can handle left-recursive (and right recursive) grammars; virtually all programming languages
 – Easier to express programming language syntax (no left factoring)

• Technique: “Shift-Reduce” parsers
 – Work bottom up instead of top down
 – Construct right-most derivation of a program in the grammar
 – Used by many parser generators (e.g. yacc, CUP, ocamlyacc, merlin, etc.)
 – Better error detection/recovery
• Consider the left-recursive grammar:

\[
S \rightarrow S + E \mid E \\
E \rightarrow \text{number} \mid (S)
\]

• \((1 + 2 + (3 + 4)) + 5\)

• What part of the tree must we know after scanning just \((1 + 2\)

• In top-down, must be able to guess which productions to use…

Top-down vs. Bottom up

Note: '(' has been scanned but not consumed. Processing it is still pending.
Progress of Bottom-up Parsing

<table>
<thead>
<tr>
<th>Reductions</th>
<th>Scanned</th>
<th>Input Remaining</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 + 2 + (3 + 4)) + 5 ←</td>
<td>(</td>
<td>(1 + 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>(E + 2 + (3 + 4)) + 5 ←</td>
<td>(1</td>
<td>+ 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>(S + 2 + (3 + 4)) + 5 ←</td>
<td>(1 + 2</td>
<td>+ 2 + (3 + 4)) + 5</td>
</tr>
<tr>
<td>(S + E + (3 + 4)) + 5 ←</td>
<td>(1 + 2</td>
<td>+ (3 + 4)) + 5</td>
</tr>
<tr>
<td>(S + (3 + 4)) + 5 ←</td>
<td>(1 + 2</td>
<td>+ (3 + 4)) + 5</td>
</tr>
<tr>
<td>(S + (E + 4)) + 5 ←</td>
<td>(1 + 2 + (3</td>
<td>+ 4)) + 5</td>
</tr>
<tr>
<td>(S + (S + 4)) + 5 ←</td>
<td>(1 + 2 + (3</td>
<td>+ 4)) + 5</td>
</tr>
<tr>
<td>(S + (S + E)) + 5 ←</td>
<td>(1 + 2 + (3 + 4)</td>
<td>) + 5</td>
</tr>
<tr>
<td>(S + (S)) + 5 ←</td>
<td>(1 + 2 + (3 + 4)</td>
<td>) + 5</td>
</tr>
<tr>
<td>(S + E) + 5 ←</td>
<td>(1 + 2 + (3 + 4)</td>
<td>) + 5</td>
</tr>
<tr>
<td>(S) + 5 ←</td>
<td>(1 + 2 + (3 + 4)</td>
<td>) + 5</td>
</tr>
<tr>
<td>E + 5 ←</td>
<td>(1 + 2 + (3 + 4)</td>
<td>+ 5</td>
</tr>
<tr>
<td>S + 5 ←</td>
<td>(1 + 2 + (3 + 4)</td>
<td>+ 5</td>
</tr>
<tr>
<td>S + E ←</td>
<td>(1 + 2 + (3 + 4)</td>
<td>+ 5</td>
</tr>
<tr>
<td>S</td>
<td>(1 + 2 + (3 + 4)</td>
<td>+ 5</td>
</tr>
</tbody>
</table>

S → S + E | E
E → number | (S)
Shift/Reduce Parsing

- **Parser state:**
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- **Parsing** is a sequence of *shift* and *reduce* operations:
- **Shift:** move look-ahead token to the stack
- **Reduce:** Replace symbols \(\gamma \) at top of stack with nonterminal \(X \) such that \(X \rightarrow \gamma \) is a production. (pop \(\gamma \), push \(X \))

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1 + 2 + (3 + 4)) + 5</td>
<td>shift (</td>
</tr>
<tr>
<td>(</td>
<td>1 + 2 + (3 + 4)) + 5</td>
<td>shift 1</td>
</tr>
<tr>
<td>(1</td>
<td>+ 2 + (3 + 4)) + 5</td>
<td>reduce: (E \rightarrow \text{number})</td>
</tr>
<tr>
<td>(E</td>
<td>+ 2 + (3 + 4)) + 5</td>
<td>reduce: (S \rightarrow E)</td>
</tr>
<tr>
<td>(S</td>
<td>+ 2 + (3 + 4)) + 5</td>
<td>shift +</td>
</tr>
<tr>
<td>(S +</td>
<td>2 + (3 + 4)) + 5</td>
<td>shift 2</td>
</tr>
<tr>
<td>(S + 2</td>
<td>+ (3 + 4)) + 5</td>
<td>reduce: (E \rightarrow \text{number})</td>
</tr>
</tbody>
</table>

S \(\rightarrow S + E \mid E \)
E \(\rightarrow \text{number} \mid (\text{S}) \)
Simple LR parsing with no look ahead.
LR Parser States

• Goal: know what set of reductions are legal at any given point.
• Idea: Summarize all possible stack prefixes α as a finite parser state.
 – Parser state is computed by a DFA that reads the stack σ.
 – Accept states of the DFA correspond to unique reductions that apply.

• Example: LR(0) parsing
 – **Left-to-right scanning**, **Right-most derivation**, **zero** look-ahead tokens
 – Too weak to handle many language grammars (e.g. the “sum” grammar)
 – But, helpful for understanding how the shift-reduce parser works.
Example LR(0) Grammar: Tuples

• Example grammar for non-empty tuples and identifiers:

\[
S \rightarrow (L) \mid \text{id}
\]
\[
L \rightarrow S \mid L, S
\]

• Example strings:

 – x
 – (x, y)
 – (((x)))
 – (x, (y, z), w)
 – (x, (y, (z, w)))
Shift/Reduce Parsing

- **Parser state:**
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input

- **Parsing is a sequence of shift and reduce operations:**

 - **Shift:** move look-ahead token to the stack: e.g.
Stack	Input	Action
(x, (y, z), w)	shift (
(x, (y, z), w)	shift x	

 - **Reduce:** Replace symbols γ at top of stack with nonterminal X such that $X \rightarrow \gamma$ is a production. (pop γ, push X): e.g.
Stack	Input	Action
(x, (y, z), w)	reduce S \rightarrow id	
(S, (y, z), w)	reduce L \rightarrow S	
Example Run

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x, (y, z), w)</td>
<td>shift (</td>
<td>(x, (y, z), w)</td>
</tr>
<tr>
<td>(x, (y, z), w)</td>
<td>shift x</td>
<td></td>
</tr>
<tr>
<td>(S, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift (</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift y</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift z</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>(L)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td></td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce S</td>
<td>id</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>reduce L</td>
<td>L, S</td>
</tr>
<tr>
<td>(L, (y, z), w)</td>
<td>shift ,</td>
<td>(L, (y, z), w)</td>
</tr>
</tbody>
</table>
Action Selection Problem

- Given a stack σ and a look-ahead symbol b, should the parser:
 - Shift b onto the stack (new stack is σb)
 - Reduce a production $X \rightarrow \gamma$, assuming that $\sigma = \alpha \gamma$ (new stack is αX)?

- Sometimes the parser can reduce but shouldn’t
 - For example, $X \rightarrow \varepsilon$ can always be reduced

- Sometimes the stack can be reduced in different ways

- Main idea: decide what to do based on a prefix α of the stack plus the look-ahead symbol.
 - The prefix α is different for different possible reductions since in productions $X \rightarrow \gamma$ and $Y \rightarrow \beta$, γ and β might have different lengths.

- Main goal: know what set of reductions are legal at any point.
 - How do we keep track?
LR(0) States

• An LR(0) state is a set of items keeping track of progress on possible upcoming reductions.
• An LR(0) item is a production from the language with an extra separator “.” somewhere in the right-hand-side

Example items: \(S \mapsto .(L) \) or \(S \mapsto (.L) \) or \(L \mapsto S \).

• Intuition:
 – Stuff before the ‘.’ is already on the stack (beginnings of possible \(\gamma \)’s to be reduced)
 – Stuff after the ‘.’ is what might be seen next
 – The prefixes \(\alpha \) are represented by the state itself

\[
\begin{align*}
S &\mapsto (L) \mid \text{id} \\
L &\mapsto S \mid L, S
\end{align*}
\]
Constructing the DFA: Start state & Closure

- First step: Add a new production \(S' \rightarrow S\$ \) to the grammar
- Start state of the DFA = empty stack, so it contains the item: \(S' \rightarrow .S\$ \)
- Closure of a state:
 - Adds items for all productions whose LHS nonterminal occurs in an item in the state just after the ‘.’
 - The added items have the ‘.’ located at the beginning (no symbols for those items have been added to the stack yet)
 - Note that newly added items may cause yet more items to be added to the state… keep iterating until a fixed point is reached.
- Example: \(\text{CLOSURE}([S' \rightarrow .S$]) = \{S' \rightarrow .S\$, S \rightarrow (L), S \rightarrow .id\} \)
- Resulting “closed state” contains the set of all possible productions that might be reduced next.
Example: Constructing the DFA

- First, we construct a state with the initial item $S' \rightarrow .S$

\[
\begin{align*}
S' & \rightarrow S$
S & \rightarrow (L) \mid \text{id}
L & \rightarrow S \mid L , S
\end{align*}
\]
Next, we take the closure of that state:
\[
\text{CLOSURE}\{S' \mapsto S\} = \{S' \mapsto S, S \mapsto (L), S \mapsto \text{id}\}
\]

In the set of items, the nonterminal S appears after the `.'

So we add items for each S production in the grammar

\[
\begin{align*}
S' &\mapsto S \\
S &\mapsto (L) \mid \text{id} \\
L &\mapsto S \mid L, S
\end{align*}
\]
• Next we add the transitions:
• First, we see what terminals and nonterminals can appear after the ‘.’ in the source state.
 – Outgoing edges have those label.
• The target state (initially) includes all items from the source state that have the edge-label symbol after the ‘.’, but we advance the ‘.’ (to simulate shifting the item onto the stack)
Example: Constructing the DFA

- Finally, for each new state, we take the closure.
- Note that we have to perform two iterations to compute CLOSURE(\{S \mapsto (. L)\})
 - First iteration adds L \mapsto .S and L \mapsto .L, S
 - Second iteration adds S \mapsto .(L) and S \mapsto .id
Full DFA for the Example

S' → .S$
S → .(L)
S → .id

S → id.

L → L, . S
S → .(L)
S → .id

L → L, S.

S → (. L)
L → . S
L → .L, S
S → .(L)
S → .id

S → (L).
L → (L .)
L → L . , S

• Current state: run the DFA on the stack.
• If a reduce state is reached, reduce
• Otherwise, if the next token matches an outgoing edge, shift.
• If no such transition, it is a parse error.

Reduce state: ‘.’ at the end of the production

Done!
Using the DFA

• Run the parser stack through the DFA.
• The resulting state tells us which productions might be reduced next.
 – If not in a reduce state, then shift the next symbol and transition according to DFA.
 – If in a reduce state, \(X \mapsto \gamma \) with stack \(\alpha \gamma \), pop \(\gamma \) and push \(X \).

• Optimization: No need to re-run the DFA from beginning every step
 – Store the state with each symbol on the stack: e.g. \(1(3(3L)5)_6 \)
 – On a reduction \(X \mapsto \gamma \), pop stack to reveal the state too:
 e.g. From stack \(1(3(3L)5)_6 \) reduce \(S \mapsto (L) \) to reach stack \(1(3 \)
 – Next, push the reduction symbol: e.g. to reach stack \(1(3S \)
 – Then take just one step in the DFA to find next state: \(1(3S_7 \)
Implementing the Parsing Table

Represent the DFA as a table of shape:
\[
\text{state} \times (\text{terminals} + \text{nonterminals})
\]

- Entries for the “action table” specify two kinds of actions:
 - Shift and goto state \(n \)
 - Reduce using reduction \(X \rightarrow \gamma \)
 - First pop \(\gamma \) off the stack to reveal the state
 - Look up \(X \) in the “goto table” and goto that state
Example Parse Table

<table>
<thead>
<tr>
<th></th>
<th>()</th>
<th>id</th>
<th>,</th>
<th>$</th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>s3</td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
<td>g4</td>
</tr>
<tr>
<td>2</td>
<td>S → id</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>s3</td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
<td>g7</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DONE</td>
</tr>
<tr>
<td>5</td>
<td>s6</td>
<td>s8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>S → (L)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L → S</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>s3</td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
<td>g9</td>
</tr>
<tr>
<td>9</td>
<td>L → L,S</td>
<td></td>
</tr>
</tbody>
</table>

sx = shift and goto state x
gx = goto state x
Example

- Parse the token stream: \((x, (y, z), w)\)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Stream</th>
<th>Action (according to table)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varepsilon_1)</td>
<td>((x, (y, z), w)) $</td>
<td>s3</td>
</tr>
<tr>
<td>(\varepsilon_1(3))</td>
<td>(x, (y, z), w)) $</td>
<td>s2</td>
</tr>
<tr>
<td>(\varepsilon_1(3)x_2)</td>
<td>(, (y, z), w)) $</td>
<td>Reduce: (S \rightarrow \text{id})</td>
</tr>
<tr>
<td>(\varepsilon_1(3S))</td>
<td>(, (y, z), w)) $</td>
<td>g7 (from state 3 follow S)</td>
</tr>
<tr>
<td>(\varepsilon_1(3S_7))</td>
<td>(, (y, z), w)) $</td>
<td>Reduce: (L \rightarrow S)</td>
</tr>
<tr>
<td>(\varepsilon_1(3L))</td>
<td>(, (y, z), w)) $</td>
<td>g5 (from state 3 follow L)</td>
</tr>
<tr>
<td>(\varepsilon_1(3L_5))</td>
<td>(, (y, z), w)) $</td>
<td>s8</td>
</tr>
<tr>
<td>(\varepsilon_1(3L_{5,8}))</td>
<td>((y, z), w)) $</td>
<td>s3</td>
</tr>
<tr>
<td>(\varepsilon_1(3L_{5,8}(3))</td>
<td>((y, z), w)) $</td>
<td>s2</td>
</tr>
</tbody>
</table>
LR(0) Limitations

- An LR(0) machine only works if states with reduce actions have a *single* reduce action.
 - In such states, the machine *always* reduces (ignoring lookahead)

- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:

 OK

 \[
 S \rightarrow (L). \]

 shift/reduce

 \[
 S \rightarrow (L). \\
 L \rightarrow .L , S
 \]

 reduce/reduce

 \[
 S \rightarrow L ,S. \\
 S \rightarrow ,S.
 \]

- Such conflicts can often be resolved by using a look-ahead symbol: LR(1)
Examples

• Consider the left associative and right associative “sum” grammars:

left

\[S \rightarrow S + E \ | \ E \]
\[E \rightarrow \text{number} \ | \ (S) \]

right

\[S \rightarrow E + S \ | \ E \]
\[E \rightarrow \text{number} \ | \ (S) \]

• One is LR(0) the other isn’t… which is which and why?
• What kind of conflict do you get? Shift/reduce or Reduce/reduce?

• Ambiguities in associativity/precedence usually lead to shift/reduce conflicts.
LR(1) Parsing

- Algorithm is similar to LR(0) DFA construction:
 - LR(1) state = set of LR(1) items
 - An LR(1) item is an LR(0) item + a set of look-ahead symbols: $A \rightarrow \alpha.\beta, L$

- LR(1) closure is a little more complex:
- Form the set of items just as for LR(0) algorithm.
- Whenever a new item $C \rightarrow \gamma$ is added because $A \rightarrow \beta.C\delta, L$ is already in the set, we need to compute its look-ahead set M:
 1. The look-ahead set M includes FIRST(δ) (the set of terminals that may start strings derived from δ)
 2. If δ can derive ε (it is nullable), then the look-ahead M also contains L
Example Closure

\[
\begin{align*}
S' & \rightarrow S$
S & \rightarrow E + S \mid E \\
E & \rightarrow \text{number} \mid (S)
\end{align*}
\]

- **Start item:** \(S' \rightarrow .S$ \), \(\{\} \)
- **Since S is to the right of a ‘.’, add:**
 \[
 \begin{align*}
 S & \rightarrow .E + S \mid \{\}$ \\
 S & \rightarrow .E \mid \{\} \\
 \text{Note: } \{\} \text{ is FIRST($$)}
 \end{align*}
\]
- **Need to keep closing, since E appears to the right of a ‘.’ in ‘E + S’:**
 \[
 \begin{align*}
 E & \rightarrow \text{number} \mid (+) \\
 E & \rightarrow .(S) \mid (+) \\
 \text{Note: } + \text{ added for reason 1}
 \end{align*}
\]
- **Because E also appears to the right of ‘.’ in ‘E’ we get:**
 \[
 \begin{align*}
 E & \rightarrow \text{number} \mid \{\}$ \\
 E & \rightarrow .(S) \mid \{\} \\
 \text{Note: $ added for reason 2}
 \end{align*}
\]
- **All items are distinct, so we’re done**
Using the DFA

1. The behavior is determined if:
 - There is no overlap among the look-ahead sets for each reduce item, and
 - None of the look-ahead symbols appear to the right of a ‘.’

The fragment of the Action & Goto tables shows the choices between shift and reduce are resolved.
LR variants

- LR(1) gives maximal power out of a 1 look-ahead symbol parsing table
 - DFA + stack is a push-down automaton (recall 262)
- In practice, LR(1) tables are big.
 - Modern implementations (e.g. menhir) directly generate code

- LALR(1) = “Look-ahead LR”
 - Merge any two LR(1) states whose items are identical except for the look-ahead sets:

```plaintext
S' → .S$  {}
S → .E + S  {$}
S → .E  {$}
E → .num  {+}
E → .( S )  {+}
E → .num  {$}
E → .( S )  {$}
```

 - Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but
 - Results in a much smaller parse table and works well in practice
 - This is the usual technology for automatic parser generators: yacc, ocamlyacc

- GLR = “Generalized LR” parsing
 - Efficiently compute the set of all parses for a given input
 - Later passes should disambiguate based on other context
Classification of Grammars

LR(1)
LALR(1)
LL(1)
SLR
LR(0)