Lecture 15

CIS 341: COMPILERS
Announcements

• HW4: OAT v. 1.0
 – Parsing & basic code generation
 – **Due: March 28th**
 – **START EARLY!**

• Midterm Exam
 – Grading almost finished. We expect to release the results on gradescope by Thursday
Inference Rules

• We can read a judgment $G;L \vdash e : t$ as “the expression e is well typed and has type t”
• For any environment G, expression e, and statements s_1, s_2.

$$G;L;rt \vdash \text{if (e) } s_1 \text{ else } s_2$$

holds if $G;L \vdash e : \text{bool}$ and $G;L;rt \vdash s_1$ and $G;L;rt \vdash s_2$ all hold.

• More succinctly: we summarize these constraints as an inference rule:

<table>
<thead>
<tr>
<th>Premises</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G;L \vdash e : \text{bool}$</td>
<td>$G;L;rt \vdash \text{if (e) } s_1 \text{ else } s_2$</td>
</tr>
<tr>
<td>$G;L;rt \vdash s_1$</td>
<td></td>
</tr>
<tr>
<td>$G;L;rt \vdash s_2$</td>
<td></td>
</tr>
</tbody>
</table>

• This rule can be used for any substitution of the syntactic metavariables G, e, s_1 and s_2.
Consider the source typing judgment for source expressions:

\[C \vdash e : t \]

How do we interpret this information in the target language?

\[\llbracket C \vdash e : t \rrbracket = \ ? \]

\[\llbracket t \rrbracket \text{ is a target type} \]

\[\llbracket e \rrbracket \text{ translates to a (potentially empty) sequence of instructions, that, when run, computes the result into some operand} \]

\[\text{INVARIANT: if } \llbracket C \vdash e : t \rrbracket = \text{ty, operand, stream} \]

\[\text{then the type (at the target level) of the operand is } \text{ty=} \llbracket t \rrbracket \]
Example

- \(C \vdash 341 + 5 : \text{int} \)
 what is \(\llbracket C \vdash 341 + 5 : \text{int} \rrbracket \)?

\[
\begin{align*}
\llbracket C \vdash 341 : \text{int} \rrbracket &= (\text{i64}, \text{Const 341}, []) \\
\llbracket C \vdash 5 : \text{int} \rrbracket &= (\text{i64}, \text{Const 5}, [])
\end{align*}
\]

\[
\begin{align*}
\llbracket C \vdash 341 \rrbracket &= (\text{i64}, \text{Const 341}, []) \\
\llbracket C \vdash 5 \rrbracket &= (\text{i64}, \text{Const 5}, [])
\end{align*}
\]

\[
\begin{align*}
\llbracket C \vdash 341 + 5 : \text{int} \rrbracket &= (\text{i64}, \text{tmp}, [ext{tmp} = \text{add i64 (Const 341) (Const 5) }])
\end{align*}
\]
What about the Context?

- What is \([C]\)?
- Source level C has bindings like: \(x:\text{int}, y:\text{bool}\)
 - We think of it as a finite map from identifiers to types

- What is the interpretation of C at the target level?

- \([C]\) maps source identifiers, “x” to source types and \([x]\)

- What is the interpretation of a variable \([x]\) at the target level?
 - How are the variables used in the type system?

\[
\frac{x : t \in L}{G ; L \vdash x : t} \quad \text{TYP_VAR} \quad \frac{x : t \in L \quad G ; L \vdash \text{exp} : t}{G ; L ; rt \vdash x = \text{exp}; \Rightarrow L} \quad \text{TYP_ASSN}
\]

as expressions
(which denote values)

as addresses
(which can be assigned)
Interpretation of Contexts

- \([C]\) = a map from source identifiers to types and target identifiers

- **INVARIANT:**

 \[x:t \in C \]

 means that

 1. lookup \([C]\) \(x\) = \((t, \%id_x)\)

 2. the (target) type of \(\%id_x\) is \([t]^{*}\) (a pointer to \([t]\))
Interpretation of Variables

- Establish invariant for expressions:

\[
\begin{align*}
& \quad \quad x : t \in L \\
\Rightarrow & \quad \quad G ; L \vdash x : t \quad \text{TYP_VAR} \\
& \quad \quad \text{as expressions (which denote values)}
\end{align*}
\]

\[
\begin{align*}
& \quad \quad G ; L \vdash \text{return } \quad \text{TYP_VAR} \\
& \quad \quad \text{as expressions (which denote values)}
\end{align*}
\]

- What about statements?

\[
\begin{align*}
& \quad \quad x : t \in L \\
\Rightarrow & \quad \quad G ; L \vdash \text{exp} : t \\
& \quad \quad G ; L ; rt \vdash x = \text{exp}; \Rightarrow L \\
& \quad \quad \text{TYP_ASSN} \\
& \quad \quad \text{as addresses (which can be assigned)}
\end{align*}
\]

\[
\begin{align*}
& \quad \quad G ; L \vdash \text{exp} : t \\
& \quad \quad \text{TYP_ASSN} \\
& \quad \quad \text{as addresses (which can be assigned)}
\end{align*}
\]

\[
\begin{align*}
& \quad \quad G ; L \vdash \text{return} \\
& \quad \quad \text{TYP_VAR} \\
& \quad \quad \text{as expressions (which denote values)}
\end{align*}
\]

where \((\text{id}_{\text{x}}, \text{id}_{\text{x}}) = \text{lookup } \text{[t]} \text{x}\)
Other Judgments?

• Statement:
 \[[C; rt \vdash stmt \Rightarrow C'] = [C'], \text{stream} \]

• Declaration:
 \[[G;L \vdash \text{var } x = \text{exp} \Rightarrow G;L,x:t] = [G;L,x:t], \text{stream} \]

INVARIANT: stream is of the form:

\[\text{stream'} @ \\
[\%id_x = \text{alloca } [t]; \\
\text{store } [t] \text{ opn, } [t]^* \%id_x] \]

when \[[G;L \vdash \text{exp } : t] = ([t], \text{opn}, \text{stream'}) \]

• Rest follow similarly
COMPILING CONTROL
Translating while

- Consider translating “\texttt{while(e) s}”:
 - Test the conditional, if true jump to the body, else jump to the label after the body.

\[
[C;rt \vdash \texttt{while(e) s} \Rightarrow C'] = [C'],
\]

\textbf{lpre:}
\begin{verbatim}
opn = [C \vdash e : bool]
%test = icmp eq il opn, 0
br %test, label %lpost, label %lbody
\end{verbatim}

\textbf{lbody:}
\begin{verbatim}
[C;rt \vdash s \Rightarrow C']
br %lpre
\end{verbatim}

\textbf{lpost:}

- Note: writing \texttt{opn = [C \vdash e : bool]} is pun
 - translating \texttt{[C \vdash e : bool]} generates \textit{code} that puts the result into \texttt{opn}
 - In this notation there is implicit collection of the code
Translating if-then-else

- Similar to while except that code is slightly more complicated because if-then-else must reach a merge and the else branch is optional.

\[
[C; rt \vdash \text{if } (e_1) s_1 \text{ else } s_2 \Rightarrow C'] = [C']
\]

```plaintext
opn = [C \vdash e : bool]
%test = icmp eq il opn, 0
br %test, label %else, label %then
then:
  [C; rt \vdash s_1 \Rightarrow C']
br %merge
else:
  [C; rt s_2 \Rightarrow C']
br %merge
merge:
```
Connecting this to Code

• Instruction streams:
 – Must include labels, terminators, and “hoisted” global constants

• Must post-process the stream into a control-flow-graph

• See frontend.ml from HW4
OPTIMIZING CONTROL
Consider compiling the following program fragment:

```c
if (x & !y | !w)
    z = 3;
else
    z = 4;
return z;
```

Standard Evaluation:

```assembly
%tmp1 = icmp Eq [y], 0       ; !y
%tmp2 = and [x] [tmp1]
%tmp3 = icmp Eq [w], 0
%tmp4 = or %tmp2, %tmp3
%tmp5 = icmp Eq %tmp4, 0
br %tmp4, label %else, label %then

then:
    store [z], 3
    br %merge

else:
    store [z], 4
    br %merge

merge:
    %tmp5 = load [z]
    ret %tmp5
```
Observation

• Usually, we want the translation \([e]\) to produce a value
 – \([C \vdash e : t] = (\text{ty}, \text{operand}, \text{stream})\)
 – e.g. \([C \vdash e_1 + e_2 : \text{int}] = (\text{i64}, \%\text{tmp}, [\%\text{tmp} = \text{add} [e_1] [e_2]])\)

• But when the expression we’re compiling appears in a test, the program jumps to one label or another after the comparison but otherwise never uses the value.

• In many cases, we can avoid “materializing” the value (i.e. storing it in a temporary) and thus produce better code.
 – This idea also lets us implement different functionality too: e.g. short-circuiting boolean expressions
Idea: Use a different translation for tests

Usual Expression translation:
\[\llbracket C \vdash e : t \rrbracket = (ty, operand, stream) \]

Conditional branch translation of booleans, without materializing the value:
\[\llbracket C \vdash e : \text{bool@} \rrbracket \text{ltrue lfalse} = \text{stream} \]

Notes:
• takes two extra arguments: a “true” branch label and a “false” branch label.
• Doesn’t “return a value”

• Aside: this is a form of continuation-passing translation…

where
\[\llbracket C, rt \vdash s_1 \Rightarrow C' \rrbracket = \llbracket C' \rrbracket, \text{insns}_1 \]
\[\llbracket C, rt \vdash s_2 \Rightarrow C'' \rrbracket = \llbracket C'' \rrbracket, \text{insns}_2 \]
\[\llbracket C \vdash e : \text{bool@} \rrbracket \text{then else} = \text{insns}_3 \]
Short Circuit Compilation: Expressions

- $\llbracket C \vdash e : \text{bool} @ \rrbracket \ ltrue \ lfalse = \text{insns}$

\[
\begin{align*}
\llbracket C \vdash \text{false} : \text{bool} @ \rrbracket \ ltrue \ lfalse &= \ [\text{br} \ %1\text{false}] & \text{FALSE} \\
\llbracket C \vdash \text{true} : \text{bool} @ \rrbracket \ ltrue \ lfalse &= \ [\text{br} \ %1\text{true}] & \text{TRUE} \\
\llbracket C \vdash \text{e} : \text{bool} @ \rrbracket \ lfalse \ ltrue &= \text{insns} & \text{NOT}
\end{align*}
\]

$\llbracket C \vdash \neg e : \text{bool} @ \rrbracket \ ltrue \ lfalse = \text{insns}$
Short Circuit Evaluation

Idea: build the logic into the translation

$$\llbracket C \vdash e_1 : bool \rrbracket \ ltrue \ \text{right} = \ insns_1 \ \llbracket C \vdash e_2 : bool \rrbracket \ ltrue \ lfalse = \ insns_2$$

$$\llbracket C \vdash e_1 | e_2 : bool \rrbracket \ ltrue \ lfalse =$$

\begin{align*}
\text{right:} & \quad \text{insns}_1 \\
\text{insns}_2 \\
\end{align*}

$$\llbracket C \vdash e_1 : bool \rrbracket \ \text{right} \ lfalse = \ insns_1 \ \llbracket C \vdash e_2 : bool \rrbracket \ ltrue \ lfalse = \ insns_2$$

$$\llbracket C \vdash e_1 \& e_2 : bool \rrbracket \ ltrue \ lfalse =$$

\begin{align*}
\text{right:} & \quad \text{insns}_1 \\
\text{insns}_2 \\
\end{align*}

where right is a fresh label
Short-Circuit Evaluation

Consider compiling the following program fragment:

```c
if (x & !y | !w)
    z = 3;
else
    z = 4;
return z;
```

```assembly
%tmp1 = icmp Eq [%x], 0
br %tmp1, label %right2, label %right1

right1:
    %tmp2 = icmp Eq [%y], 0
    br %tmp2, label %then, label %right2

right2:
    %tmp3 = icmp Eq [%w], 0
    br %tmp3, label %then, label %else

then:
    store [%z], 3
    br %merge

else:
    store [%z], 4
    br %merge

merge:
    %tmp5 = load [%z]
    ret %tmp5
```
The Story So Far

- As of HW4:
 - See how to compile a C-like language to x86 assembly by way of the LLVM IR

- Main idea 1:
 - Translation by way of a series of languages, each with well-defined semantics

- Main idea 2:
 - Structure of the semantics (e.g. scoping and/or type-checking rules) guides the structure of the translation
What’s next?

• **Source language features:**
 – First-class functions
 – Objects & Classes
 – Polymorphism
 – Modules

 ⇒ How do we define their semantics? How do we compile them?

• **Performance / Optimization:**
 – How can we improve the quality of the generated code?
 – What information do we need to do the optimization?

 ⇒ Static analyses
Untyped lambda calculus
Substitution
Evaluation

FIRST-CLASS FUNCTIONS
“Functional” languages

• Languages like ML, Haskell, Scheme, Python, C#, Java 8, Swift
• Functions can be passed as arguments (e.g. map or fold)
• Functions can be returned as values (e.g. compose)
• Functions nest: inner function can refer to variables bound in the outer function

let add = fun x -> fun y -> x + y
let inc = add 1
let dec = add -1

let compose = fun f -> fun g -> fun x -> f (g x)
let id = compose inc dec

• How do we implement such functions?
Free Variables and Scoping

```ocaml
code
let add = fun x -> fun y -> x + y
let inc = add 1
```

- The result of `add 1` is a function
- After calling `add`, we can’t throw away its argument (or its local variables) because those are needed in the function returned by `add`.
- We say that the variable `x` is `free` in `fun y -> x + y`
 - Free variables are defined in an outer scope
- We say that the variable `y` is `bound` by “`fun y`” and its scope is the body “`x + y`” in the expression `fun y -> x + y`
- A term with no free variables is called `closed`.
- A term with one or more free variables is called `open`.
(Untyped) Lambda Calculus

- The lambda calculus is a minimal programming language.
 - Note: we’re writing (fun x -> e) lambda-calculus notation: \(\lambda x. e \)
- It has variables, functions, and function application.
 - That’s it!
 - It’s Turing Complete.
 - It’s the foundation for a *lot* of research in programming languages.
 - Basis for “functional” languages like Scheme, ML, Haskell, etc.

Abstract syntax in OCaml:

```ocaml
type exp =
 | Var of var (* variables *)
 | Fun of var * exp (* functions: fun x -> e *)
 | App of exp * exp (* function application *)
```

Concrete syntax:

```
exp ::= 
 | x variables
 | fun x -> exp functions
 | exp1 exp2 function application
 | ( exp ) parentheses
```
Values and Substitution

• The only values of the lambda calculus are (closed) functions:

\[
\text{val ::= val :\= | \text{fun } x \rightarrow \text{exp} } \quad \text{functions are values}
\]

• To substitute a (closed) value \(v\) for some variable \(x\) in an expression \(e\):
 – Replace all \textit{free occurrences} of \(x\) in \(e\) by \(v\).
 – In OCaml: written \texttt{subst } \(v \ x \ e\)
 – In Math: written \(e\{v/x\}\)

• Function application is interpreted by substitution:

\[
(\text{fun } x \rightarrow \text{fun } y \rightarrow x + y) \ 1
\begin{align*}
&= \text{subst } 1 \ x \ (\text{fun } y \rightarrow x + y) \\
&= (\text{fun } y \rightarrow 1 + y)
\end{align*}
\]
Lambda Calculus Operational Semantics

- **Substitution function (in Math):**

 \[
 \begin{align*}
 x\{v/x\} &= v & \text{(replace the free } x \text{ by } v) \\
 y\{v/x\} &= y & \text{(assuming } y \neq x) \\
 (\text{fun } x \rightarrow \text{exp})\{v/x\} &= (\text{fun } x \rightarrow \text{exp}) & \text{(} x \text{ is bound in } \text{exp}) \\
 (\text{fun } y \rightarrow \text{exp})\{v/x\} &= (\text{fun } y \rightarrow \text{exp}\{v/x\}) & \text{(assuming } y \neq x) \\
 (e_1 \ e_2)\{v/x\} &= (e_1\{v/x\} \ e_2\{v/x\}) & \text{(substitute everywhere)}
 \end{align*}
 \]

- **Examples:**

 \[
 x \ y \ (\text{fun } z \rightarrow z)\{v/x\} \Rightarrow x \ (\text{fun } z \rightarrow z)
 \]

 \[
 (\text{fun } x \rightarrow x \ y)\{(\text{fun } z \rightarrow z) \ / \ y\} \Rightarrow (\text{fun } x \rightarrow x \ (\text{fun } z \rightarrow z))
 \]

 \[
 (\text{fun } x \rightarrow x)\{(\text{fun } z \rightarrow z) \ / \ x\} \Rightarrow (\text{fun } x \rightarrow x) \quad \text{// } x \text{ is not free!}
 \]
Free Variable Calculation

• An OCaml function to calculate the set of free variables in a lambda expression:

```ocaml
let rec free_vars (e:exp) : VarSet.t =
  begin match e with
  | Var x         -> VarSet.singleton x
  | Fun(x, body)  -> VarSet.remove x (free_vars body)
  | App(e1, e2)   -> VarSet.union (free_vars e1) (free_vars e2)
  end
```

• A lambda expression e is closed if `free_vars e` returns `VarSet.empty`

• In mathematical notation:

\[
\begin{align*}
fv(x) &= \{x\} \\
fv(\text{fun } x \to \text{exp}) &= fv(\text{exp}) \setminus \{x\} \quad (\text{"x" is a bound in exp}) \\
fv(\text{exp}_1 \text{ exp}_2) &= fv(\text{exp}_1) \cup fv(\text{exp}_2)
\end{align*}
\]
Operational Semantics

• Specified using just two inference rules with judgments of the form
 \(\text{exp} \Downarrow \text{val} \)
 - Read this notation as “program \(\text{exp} \) evaluates to value \(\text{val} \)”
 - This is \textit{call-by-value} semantics: function arguments are evaluated before substitution

\[\text{v} \Downarrow \text{v} \]

“Values evaluate to themselves”

\[\text{exp}_1 \Downarrow (\text{fun} \ x \rightarrow \text{exp}_3) \quad \text{exp}_2 \Downarrow \text{v} \quad \text{exp}_3\{v/x\} \Downarrow \text{w} \]

\[\text{exp}_1 \ \text{exp}_2 \Downarrow \text{w} \]

“To evaluate function application: Evaluate the function to a value, evaluate the argument to a value, and then substitute the argument for the function.”
Variable Capture

• Note that if we try to naively "substitute" an open term, a bound variable might capture the free variables:

\[
\text{(fun } x \rightarrow (x \ y)) \ (\text{(fun } z \rightarrow x) \ / \ y) \quad \text{Note: } x \text{ is free in (fun } x \rightarrow x) \\
= \quad \text{fun } x \rightarrow (x \ (\text{fun } z \rightarrow x)) \quad \text{free } x \text{ is } \textit{captured}!!
\]

• Usually \textit{not} the desired behavior
 – This property is sometimes called "dynamic scoping"
 The meaning of "x" is determined by where it is bound dynamically, not where it is bound statically.
 – Some languages (e.g. emacs lisp) are implemented with this as a "feature"
 – But, leads to hard to debug scoping issues
Alpha Equivalence

• Note that the names of bound variables don't matter.
 – i.e. it doesn't matter which variable names you use, as long as you use them consistently

 \[(\text{fun } x \rightarrow y \ x)\] is the "same" as \[(\text{fun } z \rightarrow y \ z)\]

 the choice of "x" or "z" is arbitrary, as long as we consistently rename them
 – Two terms that differ only by consistent renaming of bound variables are called alpha equivalent

• The names of free variables do matter:
 \[(\text{fun } x \rightarrow y \ x)\] is not the "same" as \[(\text{fun } x \rightarrow z \ x)\]

 Intuitively: y an z can refer to different things from some outer scope
• Consider the substitution operation:
 \[\{e_2/x\} e_1 \]

• To avoid capture, we define substitution to pick an alpha equivalent version of \(e_1\) such that the bound names of \(e_1\) don't mention the free names of \(e_2\).
 - Then do the "naïve" substitution.

For example:

\[
\begin{align*}
(f\text{un } x \rightarrow (x y)) \ \{\text{(fun } z \rightarrow x) / y\} \\
= (f\text{un } x' \rightarrow (x' (f\text{un } z \rightarrow x))) \quad rename \ x \ to \ x'
\end{align*}
\]