Announcements / Plan

• HW5: OAT – typechecking, structs, function pointers
 – Due: Thursday, April 13

 As always, start early!

• HW6: LLVM Optimization: analysis and register allocation
 – Due: Wednesday, April 26

• FINAL EXAM: Thursday, May 4th noon – 2:00p.m.
SUBTYPING OTHER TYPES
If we think of types as sets of values, we have a natural inclusion relation: $\text{Pos} \subseteq \text{Int}$.

This subset relation gives rise to a *subtype* relation: $\text{Pos} <: \text{Int}$.

Such inclusions give rise to a *subtyping hierarchy*:

\[
\begin{array}{cccc}
\text{Any} & \langle: & \text{Int} & \rangle:
\end{array}
\]

\[
\begin{array}{cccc}
\text{Int} & \langle: & \text{Neg} & \text{Zero} & \text{Pos} & \rangle:
\end{array}
\]

\[
\begin{array}{cccc}
\text{Bool} & \langle: & \text{True} & \text{False} & \rangle:
\end{array}
\]

Given any two types T_1 and T_2, we can calculate their *least upper bound* (LUB) according to the hierarchy.

- Example: $\text{LUB(}\text{True}, \text{False}\text{)} = \text{Bool}$, $\text{LUB(}\text{Int}, \text{Bool}\text{)} = \text{Any}$
- Note: might want to add types for “NonZero”, “NonNegative”, and “NonPositive” so that set union on values corresponds to taking LUBs on types.
"If" Typing Rule Revisited

- For statically unknown conditionals, we want the return value to be the LUB of the types of the branches:

\[
E \vdash e_1 : \text{bool} \quad E \vdash e_2 : T_1 \quad E \vdash e_3 : T_2
\]

\[
E \vdash \text{if } (e_1) \ e_2 \ \text{else } e_3 : \text{LUB}(T_1, T_2)
\]

- Note that LUB\((T_1, T_2)\) is the most precise type (according to the hierarchy) that is able to describe any value that has either type \(T_1\) or type \(T_2\).

- In math notation, LUB\((T1, T2)\) is sometimes written \(T_1 \lor T_2\).

- LUB is also called the \textit{join} operation.
Subtyping Hierarchy

• A subtyping hierarchy:

 Any

 <:

 Int

 <:

 Neg Zero Pos

 :

 Bool

 <:

 True False

 >:

 The subtyping relation is a partial order:
 – Reflexive: \(T <: T \) for any type \(T \)
 – Transitive: \(T_1 <: T_2 \) and \(T_2 <: T_3 \) then \(T_1 <: T_3 \)
 – Antisymmetric: If \(T_1 <: T_2 \) and \(T_2 <: T_1 \) then \(T_1 = T_2 \)
Downcasting

• What happens if we have an Int but need something of type Pos?
 – At compile time, we don’t know whether the Int is greater than zero.
 – At run time, we do.

• Add a “checked downcast”

\[
E ⊢ e_1 : \text{Int} \quad E, x : \text{Pos} \vdash e_2 : T_2 \quad E ⊢ e_3 : T_3
\]

\[
E ⊢ \text{ifPos} (x = e_1) \ e_2 \ \text{else} \ e_3 : T_2 \lor T_3
\]

• At runtime, ifPos checks whether \(e_1 \) is \(> 0 \). If so, branches to \(e_2 \) and otherwise branches to \(e_3 \).
• Inside the expression \(e_2 \), \(x \) is the name for \(e_1 \)'s value, which is known to be strictly positive because of the dynamic check.
• Note that such rules force the programmer to add the appropriate checks
 – We could give integer division the type: \(\text{Int} \rightarrow \text{NonZero} \rightarrow \text{Int} \)
Extending Subtyping to Other Types

• What about subtyping for tuples?
 – Intuition: whenever a program expects something of type $S_1 \times S_2$, it is sound to give it a $T_1 \times T_2$.
 – Example: $(\text{Pos} \times \text{Neg}) <: (\text{Int} \times \text{Int})$

\[
T_1 <: S_1 \quad T_2 <: S_2 \\
(T_1 \times T_2) <: (S_1 \times S_2)
\]

• What about functions?

• When is $T_1 \rightarrow T_2 <: S_1 \rightarrow S_2$?
• One way to see it:

Expected function

\[
S_1 \rightarrow T_1 \rightarrow T_2 \rightarrow S_2
\]

Actual function

• Need to convert an \(S_1 \) to a \(T_1 \) and \(T_2 \) to \(S_2 \), so the argument type is \textit{contravariant} and the output type is \textit{covariant}.

\[
S_1 <: T_1 \quad T_2 <: S_2
\]

\[
(T_1 \rightarrow T_2) <: (S_1 \rightarrow S_2)
\]
Immutable Records

- Record type: \(\{\text{lab}_1:T_1; \text{lab}_2:T_2; \ldots ; \text{lab}_n:T_n\} \)
 - Each \(\text{lab}_i \) is a label drawn from a set of identifiers.

\[
\begin{align*}
\text{RECORD} & \quad E \vdash e_1 : T_1 \quad E \vdash e_2 : T_2 \quad \ldots \quad E \vdash e_n : T_n \\
\text{E \vdash \{} & \quad \text{lab}_1 = e_1; \ \text{lab}_2 = e_2; \ \ldots ; \ \text{lab}_n = e_n \} : \{\text{lab}_1:T_1; \ \text{lab}_2:T_2; \ \ldots ; \ \text{lab}_n:T_n\} \\
\text{PROJECTION} & \quad E \vdash e : \{\text{lab}_1:T_1; \ \text{lab}_2:T_2; \ \ldots ; \ \text{lab}_n:T_n\} \\
& \quad E \vdash e.\text{lab}_i : T_i
\end{align*}
\]
Immutable Record Subtyping

- **Depth subtyping:**
 - Corresponding fields may be subtypes

 \[
 T_1 <: U_1 \quad T_2 <: U_2 \quad \ldots \quad T_n <: U_n
 \]

 \[
 \{\text{lab}_1:T_1; \text{lab}_2:T_2; \ldots; \text{lab}_n:T_n\} <: \{\text{lab}_1:U_1; \text{lab}_2:U_2; \ldots; \text{lab}_n:U_n\}
 \]

- **Width subtyping:**
 - Subtype record may have *more* fields:

 \[
 m \leq n
 \]

 \[
 \{\text{lab}_1:T_1; \text{lab}_2:T_2; \ldots; \text{lab}_n:T_n\} <: \{\text{lab}_1:T_1; \text{lab}_2:T_2; \ldots; \text{lab}_m:T_m\}
 \]
Depth & Width Subtyping vs. Layout

- Width subtyping (without depth) is compatible with "inlined" record representation as with C structs:

\[
\{x: \text{int}; \ y: \text{int}; \ z: \text{int}\} \ <: \ \{x: \text{int}; \ y: \text{int}\}
\]

[Width Subtyping]

- The layout and underlying field indices for 'x' and 'y' are identical.
- The 'z' field is just ignored

- Depth subtyping (without width) is similarly compatible, assuming that the space used by A is the same as the space used by B whenever \(A <: B\)
- But… they don't mix without
Immutable Record Subtyping (cont’d)

• Width subtyping assumes an implementation in which order of fields in a record matters:

\{x:int; y:int\} \neq \{y:int; x:int\}

• But: \{x:int; y:int; z:int\} <: \{x:int; y:int\}
 – Implementation: a record is a struct, subtypes just add fields at the end of the struct.

• Alternative: allow permutation of record fields:

\{x:int; y:int\} = \{y:int; x:int\}
 – Implementation: compiler sorts the fields before code generation.
 – Need to know all of the fields to generate the code

• Permutation is not directly compatible with width subtyping:

\{x:int; z:int; y:int\} =
\{x:int; y:int; z:int\} <:\{y:int; z:int\}
If you want both:

- If you want permutability & dropping, you need to either copy (to rearrange the fields) or use a dictionary like this:

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>42</td>
<td>55</td>
<td>66</td>
</tr>
</tbody>
</table>

\[p = \{x=42; \ y=55; \ z=66\} \]
\[: \{x:\text{int}; \ y:\text{int}; \ z:\text{int}\} \]

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>z</th>
</tr>
</thead>
</table>

\[q: \{y:\text{int}; \ z:\text{int}\} \]
Subtyping and References

• What is the proper subtyping relationship for references and arrays?

• Suppose we have NonZero as a type and the division operation has type: Int -> NonZero -> Int
 – Recall that NonZero <: Int
• Should (NonZero ref) <: (Int ref) ?
• Consider this program:

```plaintext
Int bad(NonZero ref r) {  
  Int ref a = r;  (* OK because (NonZero ref <: Int ref*)  
a := 0;  (* OK because 0 : Zero <: Int *)  
return (42 / !r)  (* OK because !r has type NonZero *)  
}
```
Mutable Structures are Invariant

• Covariant reference types are unsound
 – As demonstrated in the previous example

• Contravariant reference types are also unsound
 – i.e. If $T_1 <: T_2$ then $\text{ref } T_2 <: \text{ref } T_1$ is also unsound
 – Exercise: construct a program that breaks contravariant references.

• Moral: Mutable structures are invariant:
 \[T_1 \text{ ref } <: T_2 \text{ ref } \implies T_1 = T_2 \]

• Same holds for arrays, OCaml-style mutable records, object fields, etc.
 – Java generics are invariant for this reason too:
 \[\text{Queue<String> } <: \text{Queue<Object>} \]

 – Note: Java and C# get subtyping of arrays wrong. They allows covariant array subtyping, but then compensate by adding a dynamic check on every array update!
Another Way to See It

- We can think of a reference cell as an immutable record (object) with two functions (methods) and some hidden state:
 \[T \text{ ref} \equiv \{ \text{get: unit} \to T; \quad \text{set: T} \to \text{unit} \} \]
 - get returns the value hidden in the state.
 - set updates the value hidden in the state.

- When is \(T \text{ ref} \subseteq S \text{ ref} \)?
- Consider depth subtyping of these records...
 \{ \text{get: unit} \to T; \quad \text{set: T} \to \text{unit} \} \subseteq
 \{ \text{get: unit} \to S; \quad \text{set: S} \to \text{unit} \}
 - get components are subtypes: \(\text{unit} \to T \subseteq \text{unit} \to S \)
 - set components are subtypes: \(T \to \text{unit} \subseteq S \to \text{unit} \)

- From get, we must have \(T \subseteq S \) (covariant return)
- From set, we must have \(S \subseteq T \) (contravariant arg.)
- From \(T \subseteq S \) and \(S \subseteq T \) we conclude \(T = S \).
STRUCTURAL VS. NOMINAL TYPES
Structural vs. Nominal Typing

- Is type equality / subsumption defined by the *structure* of the data or the *name* of the data?
- Example 1: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

```ocaml
(* OCaml: *)
type cents = int  (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y
```

```haskell
(* Haskell: *)
newtype Cents = Cents Integer  (* Integer and Cents arr isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y  (* Ill typed! *)
```

- Type abbreviations are treated “structurally”
- Newtypes are treated “by name”
• In Java, Classes and Interfaces must be named and their relationships explicitly declared:

```java
/* Java: */
interface Foo {
    int foo();
}

class C {
    /* Does not implement the Foo interface */
    int foo() {return 2;}
}

class D implements Foo {
    int foo() {return 341;}
}
```

• Similarly for inheritance: programmers must declare the subclass relation via the “extends” keyword.
 – Typechecker still checks that the classes are structurally compatible
COMPILING CLASSES AND OBJECTS
Code Generation for Objects

• Classes:
 – Generate data structure types
 • For objects that are instances of the class and for the class tables
 – Generate the class tables for dynamic dispatch

• Methods:
 – Method body code is similar to functions/closures
 – Method calls require dispatch

• Fields:
 – Issues are the same as for records
 – Generating access code

• Constructors:
 – Object initialization

• Dynamic Types:
 – Checked downcasts
 – “instanceof” and similar type dispatch
Multiple Implementations

- The same interface can be implemented by multiple classes:

```java
interface IntSet {
    public IntSet insert(int i);
    public boolean has(int i);
    public int size();
}
```

```java
class IntSet1 implements IntSet {
    private List<Integer> rep;
    public IntSet1() {
        rep = new LinkedList<Integer>();
    }
    public IntSet1 insert(int i) {
        rep.add(new Integer(i));
        return this;
    }
    public boolean has(int i) {
        return rep.contains(new Integer(i));
    }
    public int size() {return rep.size();}
}
```

```java
class IntSet2 implements IntSet {
    private Tree rep;
    private int size;
    public IntSet2() {
        rep = new Leaf(); size = 0;
    }
    public IntSet2 insert(int i) {
        Tree nrep = rep.insert(i);
        if (nrep != rep) {
            rep = nrep; size += 1;
        }
        return this;
    }
    public boolean has(int i) {
        return rep.find(i);
    }
    public int size() {return size;
```
The Dispatch Problem

Consider a client program that uses the IntSet interface:

```java
IntSet set = ...;
int x = set.size();
```

• Which code to call?
 – IntSet1.size()
 – IntSet2.size()

• Client code doesn’t know the answer.
 – So objects must “know” which code to call.
 – Invocation of a method must indirect through the object.
Objects contain a pointer to a dispatch vector (also called a virtual table or vtable) with pointers to method code.

Code receiving set: IntSet only knows that set has an initial dispatch vector pointer and the layout of that vector.
Method Dispatch (Single Inheritance)

- Idea: every method has its own small integer index.
- Index is used to look up the method in the dispatch vector.

```java
interface A {
    void foo();
}
```

```java
interface B extends A {
    void bar(int x);
    void baz();
}
```

```java
class C implements B {
    void foo() {...}
    void bar(int x) {...}
    void baz() {...}
    void quux() {...}
}
```

Inheritance / Subtyping:
C <: B <: A
Dispatch Vector Layouts

- Each interface and class gives rise to a dispatch vector layout.
- Note that inherited methods have identical dispatch indices in the subclass. (Width subtyping)

```
A
A fields

B
B fields

C
C fields
```

```
foo
bar
baz
```

```
foo
bar
baz
quux
```
Representing Classes in the LLVM

• During typechecking, create a class hierarchy
 – Maps each class to its interface:
 • Superclass
 • Constructor type
 • Fields
 • Method types (plus whether they inherit & which class they inherit from)

• Compile the class hierarchy to produce:
 – An LLVM IR struct type for each object instance
 – An LLVM IR struct type for each vtable (a.k.a. class table)
 – Global definitions that implement the class tables
Example OO Code

class A {
 new (int x)() // constructor
 { int x = x; }

 void print() { return; } // method1
 int blah(A a) { return 0; } // method2
}

class B <: A {
 new (int x, int y, int z)(x){
 int y = y;
 int z = z;
 }

 void print() { return; } // overrides A
}

class C <: B {
 new (int x, int y, int z, int w)(x,y,z){
 int w = w;
 }

 void foo(int a, int b) {return;}
 void print() {return;} // overrides B
}
Example OO Hierarchy in LLVM

%Object = type { %_class_Object* }
%_class_Object = type { }

%A = type { %_class_A*, i64 }
%_class_A = type { %_class_Object*, void (%A)*, i64 (%A*, %A)* }

%B = type { %_class_B*, i64, i64, i64 }
%_class_B = type { %_class_A*, void (%B)*, i64 (%A*, %A)* }

%C = type { %_class_C*, i64, i64, i64, i64 }
%_class_C = type { %_class_B*, void (%C)*, i64 (%A*, %A)*, void (%C*, i64, i64)* }

@_vtbl_Object = global %_class_Object { }

@_vtbl_A = global %_class_A { %_class_Object* @_vtbl_Object,
 void (%A)* @_print_A,
 i64 (%A*, %A)* @_blah_A }

@_vtbl_B = global %_class_B { %_class_A* @_vtbl_A,
 void (%B)* @_print_B,
 i64 (%A*, %A)* @_blah_A }

@_vtbl_C = global %_class_C { %_class_B* @_vtbl_B,
 void (%C)* @_print_C,
 i64 (%A*, %A)* @_blah_A,
 void (%C*, i64, i64)* @_foo_C }