Announcements

• HW6: Dataflow Analysis
 – Available soon

• Talk: Sumit Gulwani of Microsoft
 “Data Manipulation using Programming By Examples and Natural Language”
 – 3:00-4:00 in Wu & Chen

• My office hours: 4:00 – 5:15 today
CODE ANALYSIS
Iterative Dataflow Analysis

• Find a solution to those constraints by starting from a rough guess.
• Start with: in[n] = ∅ and out[n] = ∅
• They don’t satisfy the constraints:
 – in[n] ⊇ use[n]
 – in[n] ⊇ out[n] - def[n]
 – out[n] ⊇ in[n'] if n' ∈ succ[n]

• Idea: iteratively re-compute in[n] and out[n] where forced to by the constraints.
 – Each iteration will add variables to the sets in[n] and out[n]
 (i.e. the live variable sets will increase monotonically)
• We stop when in[n] and out[n] satisfy these equations:
 (which are derived from the constraints above)
 – in[n] = use[n] ∪ (out[n] - def[n])
 – out[n] = \bigcup_{n' \in succ[n]} in[n']
A Worklist Algorithm

- Use a FIFO queue of nodes that might need to be updated.

for all n, $\text{in}[n] := \emptyset$, $\text{out}[n] := \emptyset$

$w =$ new queue with all nodes

repeat until w is empty

let $n =$ w.pop() \hspace{1cm} // pull a node off the queue

old$_in =$ $\text{in}[n]$ \hspace{1cm} // remember old $\text{in}[n]$

$\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n']$

$\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n])$

if ($\text{old}_in = \neq \text{in}[n]$), \hspace{1cm} // if $\text{in}[n]$ has changed

for all m in $\text{pred}[n]$, w.push(m) \hspace{1cm} // add to worklist

end
OTHER DATAFLOW ANALYSES
Generalizing Dataflow Analyses

• The kind of iterative constraint solving used for liveness analysis applies to other kinds of analyses as well.
 – Reaching definitions analysis
 – Available expressions analysis
 – Alias Analysis
 – Constant Propagation
 – These analyses follow the same 3-step approach as for liveness.

• To see these as an instance of the same kind of algorithm, the next few examples to work over a canonical intermediate instruction representation called quadruples
 – Allows easy definition of def[n] and use[n]
 – A “looser” variant of LLVM’s IR that doesn’t require the “static single assignment” – i.e. it has mutable local variables
A Quadruple sequence is just a control-flow graph (flowgraph) where each node is a quadruple:

<table>
<thead>
<tr>
<th>Quadruple forms n</th>
<th>def[n]</th>
<th>use[n]</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = b \text{ op } c)</td>
<td>{a}</td>
<td>{b,c}</td>
<td>arithmetic</td>
</tr>
<tr>
<td>(a = [b])</td>
<td>{a}</td>
<td>{b}</td>
<td>load</td>
</tr>
<tr>
<td>([a] = b)</td>
<td>\Ø</td>
<td>{b}</td>
<td>store</td>
</tr>
<tr>
<td>(a = f(b_1,\ldots,b_n))</td>
<td>{a}</td>
<td>{b_1,\ldots,b_n}</td>
<td>call w/return</td>
</tr>
<tr>
<td>(f(b_1,\ldots,b_n))</td>
<td>\Ø</td>
<td>{b_1,\ldots,b_n}</td>
<td>call no return</td>
</tr>
<tr>
<td>jump L</td>
<td>\Ø</td>
<td>\Ø</td>
<td>jump</td>
</tr>
<tr>
<td>if a goto L1 else L2</td>
<td>\Ø</td>
<td>{a}</td>
<td>branch</td>
</tr>
<tr>
<td>return a</td>
<td>\Ø</td>
<td>{a}</td>
<td>return</td>
</tr>
</tbody>
</table>
REACHING DEFINITIONS
Reaching Definition Analysis

• Question: what uses in a program does a given variable definition reach?

• This analysis is used for constant propagation & copy prop.
 – If only one definition reaches a particular use, can replace use by the definition (for constant propagation).
 – Copy propagation additionally requires that the copied value still has its same value – computed using an available expressions analysis (next)

• Input: Quadruple CFG
• Output: in[n] (resp. out[n]) is the set of nodes defining some variable such that the definition may reach the beginning (resp. end) of node n
Example of Reaching Definitions

- Results of computing reaching definitions on this simple CFG:

```
b = a + 2

out[1]: {1}
in[2]:   {1}

c = b * b

out[2]: {1,2}
in[3]:   {1,2}

b = c + 1

out[3]: {2,3}
in[4]:   {2,3}

return b * a
```
Reaching Definitions Step 1

- Define the sets of interest for the analysis
- Let $\text{defs}[a]$ be the set of *nodes* that define the variable a
- Define $\text{gen}[n]$ and $\text{kill}[n]$ as follows:

<table>
<thead>
<tr>
<th>Quadruple forms n:</th>
<th>gen[n]</th>
<th>kill[n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = b \text{ op } c$</td>
<td>${n}$</td>
<td>$\text{defs}[a] - {n}$</td>
</tr>
<tr>
<td>$a = \text{load } b$</td>
<td>${n}$</td>
<td>$\text{defs}[a] - {n}$</td>
</tr>
<tr>
<td>$[a] = b$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$a = f(b_1,...,b_n)$</td>
<td>${n}$</td>
<td>$\text{defs}[a] - {n}$</td>
</tr>
<tr>
<td>$f(b_1,...,b_n)$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$\text{jump } L$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$\text{if } a \text{ goto } L1 \text{ else } L2$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$L:$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>$\text{return } a$</td>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
</tbody>
</table>
Reaching Definitions Step 2

• Define the constraints that a reaching definitions solution must satisfy.

• \(\text{out}[n] \supseteq \text{gen}[n] \)
 “The definitions that reach the end of a node at least include the definitions generated by the node”

• \(\text{in}[n] \supseteq \text{out}[n'] \) if \(n' \) is in \(\text{pred}[n] \)
 “The definitions that reach the beginning of a node include those that reach the exit of any predecessor”

• \(\text{out}[n] \cup \text{kill}[n] \supseteq \text{in}[n] \)
 “The definitions that come in to a node either reach the end of the node or are killed by it.”
 – Equivalently: \(\text{out}[n] \supseteq \text{in}[n] - \text{kill}[n] \)
Reaching Definitions Step 3

- Convert constraints to iterated update equations:
 - \(\text{in}[n] := \bigcup_{n' \in \text{pred}[n]} \text{out}[n'] \)
 - \(\text{out}[n] := \text{gen}[n] \cup (\text{in}[n] - \text{kill}[n]) \)

- Algorithm: initialize \(\text{in}[n] \) and \(\text{out}[n] \) to \(\emptyset \)
 - Iterate the update equations until a fixed point is reached

- The algorithm terminates because \(\text{in}[n] \) and \(\text{out}[n] \) increase only monotonically
 - At most to a maximum set that includes all variables in the program

- The algorithm is precise because it finds the smallest sets that satisfy the constraints.
AVAILABLE EXPRESSIONS
Available Expressions

• Idea: want to perform common subexpression elimination:
 – \(a = x + 1 \) \(a = x + 1 \)

 \[\ldots \]
 – \(b = x + 1 \) \(b = a \)

• This transformation is safe if \(x+1 \) means computes the same value at both places (i.e. \(x \) hasn’t been assigned).
 – “\(x+1 \)” is an available expression

• Dataflow values:
 – in\([n] \) = set of nodes whose values are available on entry to \(n \)
 – out\([n] \) = set of nodes whose values are available on exit of \(n \)
Available Expressions Step 1

- Define the sets of values
- Define \texttt{gen}[n] and \texttt{kill}[n] as follows:

<table>
<thead>
<tr>
<th>Quadruple forms n:</th>
<th>gen[n]</th>
<th>kill[n]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = b \text{ op} c)</td>
<td>{n} - \text{kill}[n]</td>
<td>\text{uses}[a]</td>
</tr>
<tr>
<td>(a = [b])</td>
<td>{n} - \text{kill}[n]</td>
<td>\text{uses}[a]</td>
</tr>
<tr>
<td>([a] = b)</td>
<td>(\emptyset)</td>
<td>\text{uses}([x])</td>
</tr>
<tr>
<td>jump L</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>if a goto L1 else L2</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>L:</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(a = f(b_1,\ldots,b_n))</td>
<td>(\emptyset)</td>
<td>\text{uses}[a] \cup \text{uses}([x])</td>
</tr>
<tr>
<td>(f(b_1,\ldots,b_n))</td>
<td>(\emptyset)</td>
<td>\text{uses}([x])</td>
</tr>
<tr>
<td>return a</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
</tbody>
</table>

Note the need for “may alias” information…

Note that functions are assumed to be impure…
Available Expressions Step 2

• Define the constraints that an available expressions solution must satisfy.

• $\text{out}[n] \supseteq \text{gen}[n]$
 “The expressions made available by n that reach the end of the node”

• $\text{in}[n] \subseteq \text{out}[n']$ if n' is in $\text{pred}[n]$
 “The expressions available at the beginning of a node include those that reach the exit of every predecessor”

• $\text{out}[n] \cup \text{kill}[n] \supseteq \text{in}[n]$
 “The expressions available on entry either reach the end of the node or are killed by it.”
 – Equivalently: $\text{out}[n] \supseteq \text{in}[n] - \text{kill}[n]$

Note similarities and differences with constraints for “reaching definitions”.
Available Expressions Step 3

- Convert constraints to iterated update equations:

 - \(\text{in}[n] := \bigcap_{n' \in \text{pred}[n]} \text{out}[n'] \)

 - \(\text{out}[n] := \text{gen}[n] \cup (\text{in}[n] - \text{kill}[n]) \)

- Algorithm: initialize \(\text{in}[n] \) and \(\text{out}[n] \) to \{set of all nodes\}
 - Iterate the update equations until a fixed point is reached

- The algorithm terminates because \(\text{in}[n] \) and \(\text{out}[n] \) *decrease only monotonically*
 - At most to a minimum of the empty set

- The algorithm is precise because it finds the *largest* sets that satisfy the constraints.
GENERAL DATAFLOW ANALYSIS
Comparing Dataflow Analyses

• Look at the update equations in the inner loop of the analyses

• Liveness: (backward)
 – Let gen[n] = use[n] and kill[n] = def[n]
 – out[n] := $\bigcup_{n' \in \text{succ}[n]} \text{in}[n']$
 – in[n] := gen[n] \cup (out[n] - kill[n])

• Reaching Definitions: (forward)
 – in[n] := $\bigcup_{n' \in \text{pred}[n]} \text{out}[n']$
 – out[n] := gen[n] \cup (in[n] - kill[n])

• Available Expressions: (forward)
 – in[n] := $\bigcap_{n' \in \text{pred}[n]} \text{out}[n']$
 – out[n] := gen[n] \cup (in[n] - kill[n])
Common Features

• All of these analyses have a domain over which they solve constraints.
 – Liveness, the domain is sets of variables
 – Reaching defns., Available exprs. the domain is sets of nodes
• Each analysis has a notion of gen\[n\] and kill\[n\]
 – Used to explain how information propagates across a node.
• Each analysis is propagates information either forward or backward
 – Forward: in\[n\] defined in terms of predecessor nodes’ out[]
 – Backward: out\[n\] defined in terms of successor nodes’ in[]
• Each analysis has a way of aggregating information
 – Liveness & reaching definitions take union (U)
 – Available expressions uses intersection (∩)
 – Union expresses a property that holds for some path (existential)
 – Intersection expresses a property that holds for all paths (universal)
A forward dataflow analysis can be characterized by:

1. A domain of dataflow values \mathcal{L}
 - e.g. $\mathcal{L} = \text{the powerset of all variables}$
 - Think of $\ell \in \mathcal{L}$ as a property, then “$x \in \ell$”
 means “x has the property”

2. For each node n, a flow function $F_n : \mathcal{L} \to \mathcal{L}$
 - So far we’ve seen $F_n(\ell) = \text{gen}[n] \cup (\ell - \text{kill}[n])$
 - So: $\text{out}[n] = F_n(\text{in}[n])$
 - “If ℓ is a property that holds before the node n,
 then $F_n(\ell)$ holds after n”

3. A combining operator \sqcap
 - “If we know either ℓ_1 or ℓ_2 holds on entry
 to node n, we know at most $\ell_1 \sqcap \ell_2$”

 - $\text{in}[n] := \sqcap_{n' \in \text{pred}[n]} \text{out}[n']$
for all n, $in[n] := T$, $out[n] := T$
repeat until no change
 for all n

 $in[n] := \prod_{n' \in \text{pred}[n]} out[n']$

 $out[n] := F_n(in[n])$
 end
end

• Here, $T \in L$ ("top") represents having the "maximum" amount of information.
 – Having “more” information enables more optimizations
 – “Maximum” amount could be inconsistent with the constraints.
 – Iteration refines the answer, eliminating inconsistencies
Structure of \mathcal{L}

- The domain has structure that reflects the “amount” of information contained in each dataflow value.
- Some dataflow values are more informative than others:
 - Write $\mathcal{L}_1 \subseteq \mathcal{L}_2$ whenever \mathcal{L}_2 provides at least as much information as \mathcal{L}_1.
 - The dataflow value \mathcal{L}_2 is “better” for enabling optimizations.
- Example 1: for liveness analysis, smaller sets of variables are more informative.
 - Having smaller sets of variables live across an edge means that there are fewer conflicts for register allocation assignments.
 - So: $\mathcal{L}_1 \subseteq \mathcal{L}_2$ if and only if $\mathcal{L}_1 \supseteq \mathcal{L}_2$
- Example 2: for available expressions analysis, larger sets of nodes are more informative.
 - Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for common subexpression elimination.
 - So: $\mathcal{L}_1 \subseteq \mathcal{L}_2$ if and only if $\mathcal{L}_1 \supseteq \mathcal{L}_2$
\[\mathcal{L} \] as a Partial Order

- \(\mathcal{L} \) is a partial order defined by the ordering relation \(\sqsubseteq \).
- A partial order is an ordered set.
- Some of the elements might be incomparable.
 - That is, there might be \(\ell_1, \ell_2 \in \mathcal{L} \) such that neither \(\ell_1 \sqsubseteq \ell_2 \) nor \(\ell_2 \sqsubseteq \ell_1 \)

- Properties of a partial order:
 - Reflexivity: \(\ell \sqsubseteq \ell \)
 - Transitivity: \(\ell_1 \sqsubseteq \ell_2 \) and \(\ell_2 \sqsubseteq \ell_3 \) implies \(\ell_1 \sqsubseteq \ell_3 \)
 - Anti-symmetry: \(\ell_1 \sqsubseteq \ell_2 \) and \(\ell_2 \sqsubseteq \ell_1 \) implies \(\ell_1 = \ell_2 \)

- Examples:
 - Integers ordered by \(\leq \)
 - Types ordered by \(< \):
 - Sets ordered by \(\subseteq \) or \(\supseteq \)
Subsets of \{a,b,c\} ordered by \(\subseteq\)

Partial order presented as a Hasse diagram.

Height is 3

order \(\sqsubseteq\) is \(\subseteq\) meet \(\cap\) is \(\land\) join \(\cup\) is \(\lor\)
Meets and Joins

• The combining operator \sqcap is called the “meet” operation.
• It constructs the greatest lower bound:
 – $\ell_1 \sqcap \ell_2 \subseteq \ell_1$ and $\ell_1 \sqcap \ell_2 \subseteq \ell_2$
 “the meet is a lower bound”
 – If $\ell \subseteq \ell_1$ and $\ell \subseteq \ell_2$ then $\ell \subseteq \ell_1 \sqcap \ell_2$
 “there is no greater lower bound”

• Dually, the \sqcup operator is called the “join” operation.
• It constructs the least upper bound:
 – $\ell_1 \subseteq \ell_1 \sqcup \ell_2$ and $\ell_2 \subseteq \ell_1 \sqcup \ell_2$
 “the join is an upper bound”
 – If $\ell_1 \subseteq \ell$ and $\ell_2 \subseteq \ell$ then $\ell_1 \sqcup \ell_2 \subseteq \ell$
 “there is no smaller upper bound”

• A partial order that has all meets and joins is called a lattice.
 – If it has just meets, it’s called a meet semi-lattice.
Another Way to Describe the Algorithm

- Algorithm repeatedly computes (for each node n):
 - $\text{out}[n] := F_n(\text{in}[n])$

- Equivalently: $\text{out}[n] := F_n(\prod_{n' \in \text{pred}[n]} \text{out}[n'])$
 - By definition of in[n]

- We can write this as a simultaneous update of the vector of out[n] values:
 - let $x_n = \text{out}[n]$
 - Let $X = (x_1, x_2, \ldots, x_n)$ it’s a vector of points in \mathcal{L}

 - $F(X) = (F_1(\prod_{j \in \text{pred}[1]} \text{out}[j]), F_2(\prod_{j \in \text{pred}[2]} \text{out}[j]), \ldots, F_n(\prod_{j \in \text{pred}[n]} \text{out}[j]))$

- Any solution to the constraints is a fixpoint X of F
 - i.e. $F(X) = X$
Iteration Computes Fixpoints

- Let $X_0 = (T, T, \ldots, T)$
- Each loop through the algorithm apply F to the old vector:
 $X_1 = F(X_0)$
 $X_2 = F(X_1)$
 ...
- $F^{k+1}(X) = F(F^k(X))$
- A fixpoint is reached when $F^k(X) = F^{k+1}(X)$
 - That’s when the algorithm stops.

- Wanted: a maximal fixpoint
 - Because that one is more informative/useful for performing optimizations
Monotonicity & Termination

• Each flow function F_n maps lattice elements to lattice elements; to be sensible is should be \textit{monotonic}:

• $F : \mathcal{L} \rightarrow \mathcal{L}$ is \textit{monotonic} iff:
 \[\mathcal{L}_1 \sqsubseteq \mathcal{L}_2 \text{ implies that } F(\mathcal{L}_1) \sqsubseteq F(\mathcal{L}_2) \]
 – Intuitively: “If you have more information entering a node, then you have more information leaving the node.”

• Monotonicity lifts point-wise to the function: $F : \mathcal{L}^n \rightarrow \mathcal{L}^n$
 – vector $(x_1, x_2, \ldots, x_n) \sqsubseteq (y_1, y_2, \ldots, y_n)$ iff $x_i \sqsubseteq y_i$ for each i

• Note that F is consistent: $F(X_0) \sqsubseteq X_0$
 – So each iteration moves at least one step down the lattice (for some component of the vector)
 – $\cdots \sqsubseteq F(F(X_0)) \sqsubseteq F(X_0) \sqsubseteq X_0$

• Therefore, \# steps needed to reach a fixpoint is at most the height H of \mathcal{L} times the number of nodes: $O(Hn)$
Building Lattices?

- Information about individual nodes or variables can be lifted pointwise:
 - If \mathcal{L} is a lattice, then so is $\{ f : X \rightarrow \mathcal{L} \}$ where $f \sqsubseteq g$ if and only if $f(x) \sqsubseteq g(x)$ for all $x \in X$.

- Like types, the dataflow lattices are static approximations to the dynamic behavior:
 - Could pick a lattice based on subtyping:
 - Or other information:

- Points in the lattice are sometimes called dataflow "facts"
See HW6: Dataflow Analysis
Def / Use for SSA

Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>def[n]</th>
<th>use[n]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>a = b op c</code></td>
<td><code>{a}</code></td>
<td><code>{b, c}</code></td>
<td>arithmetic</td>
</tr>
<tr>
<td><code>a = load b</code></td>
<td><code>{a}</code></td>
<td><code>{b}</code></td>
<td>load</td>
</tr>
<tr>
<td><code>store a, b</code></td>
<td><code>Ø</code></td>
<td><code>{b}</code></td>
<td>store</td>
</tr>
<tr>
<td><code>a = alloca t</code></td>
<td><code>{a}</code></td>
<td><code>Ø</code></td>
<td>alloca</td>
</tr>
<tr>
<td><code>a = bitcast b to u</code></td>
<td><code>{a}</code></td>
<td><code>{b}</code></td>
<td>bitcast</td>
</tr>
<tr>
<td><code>a = gep b [c, d, …]</code></td>
<td><code>{a}</code></td>
<td><code>{b, c, d, …}</code></td>
<td>getelementptr</td>
</tr>
<tr>
<td><code>f(b_1, …, b_n)</code></td>
<td><code>{a}</code></td>
<td><code>{b_1, …, b_n}</code></td>
<td>call w/return</td>
</tr>
<tr>
<td><code>f(b_1, …, b_n)</code></td>
<td><code>Ø</code></td>
<td><code>{b_1, …, b_n}</code></td>
<td>void call (no return)</td>
</tr>
</tbody>
</table>

Terminators

<table>
<thead>
<tr>
<th>Terminator</th>
<th>def[n]</th>
<th>use[n]</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>br L</code></td>
<td><code>Ø</code></td>
<td><code>Ø</code></td>
<td>jump</td>
</tr>
<tr>
<td><code>br a L1 L2</code></td>
<td><code>Ø</code></td>
<td><code>{a}</code></td>
<td>conditional branch</td>
</tr>
<tr>
<td><code>return a</code></td>
<td><code>Ø</code></td>
<td><code>{a}</code></td>
<td>return</td>
</tr>
</tbody>
</table>