Lecture 22

CIS 341: COMPILERS
Announcements

• HW 6: Dataflow Analysis and Optimizations
 – Available later today(?)
 – Due Next Thursday, April 16

• HW 7: Optimization & Experiments
 – Available next week
 – Due: April 29th
QUALITY OF DATAFLOW ANALYSIS SOLUTIONS
Best Possible Solution

• Suppose we have a control-flow graph.
• If there is a path p_1 starting from the root node (entry point of the function) traversing the nodes $n_0, n_1, n_2, \ldots n_k$
• The best possible information along the path p_1 is:
 $\ell_{p_1} = F_{n_k}(\ldots F_{n_2}(F_{n_1}(F_{n_0}(T)))\ldots)$
• Best solution at the output is some $\ell \sqsubseteq \ell_p$ for all paths p.

• Meet-over-paths (MOP) solution:
 $\bigcap_{p \in \text{paths_to}[n]} \ell_p$

Best answer here is:
$F_5(F_3(F_2(F_1(T)))) \sqcap F_5(F_4(F_2(F_1(T))))$
What about quality of iterative solution?

- Does the iterative solution: \(\text{out}[n] = F_n(\prod_{n' \in \text{pred}[n]} \text{out}[n']) \) compute the MOP solution?

- MOP Solution: \(\prod_{p \in \text{paths_to}[n]} \ell_p \)

- **Answer:** Yes, if the flow functions *distribute* over \(\prod \)
 - Distributive means: \(\prod_i F_n(\ell_i) = F_n(\prod_i \ell_i) \)
 - Proof is a bit tricky & beyond the scope of this class. (Difficulty: loops in the control flow graph might mean there are infinitely many paths…)

- Not all analyses give MOP solution
 - They are more conservative.
Reaching Definitions is MOP

- $F_n[x] = \text{gen}[n] \cup (x - \text{kill}[n])$

- Does F_n distribute over meet $\sqcap = \bigcup$?

- $F_n[x \sqcap y]$
 - $= \text{gen}[n] \cup ((x \cup y) - \text{kill}[n])$
 - $= \text{gen}[n] \cup ((x - \text{kill}[n]) \cup (y - \text{kill}[n]))$
 - $= (\text{gen}[n] \cup (x - \text{kill}[n])) \cup (\text{gen}[n] \cup (y - \text{kill}[n]))$
 - $= F_n[x] \cup F_n[y]$
 - $= F_n[x] \sqcap F_n[y]$

- Therefore: Reaching Definitions with iterative analysis always terminates with the MOP (i.e. best) solution.
“Classic” Constant Propagation

• Constant propagation can be formulated as a dataflow analysis.

• Idea: propagate and fold integer constants in one pass:
 \[
 x = 1; \quad x = 1; \\
 y = 5 + x; \quad y = 6; \\
 z = y \times y; \quad z = 36; \\
 \]

• Information about a single variable:
 – Variable is never defined.
 – Variable has a single, constant value.
 – Variable is assigned multiple values.
Domains for Constant Propagation

• We can make a constant propagation lattice \(L \) for one variable like this:

\[
T = \text{multiple values} \\
\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \\
\perp = \text{never defined}
\]

• To accommodate multiple variables, we take the product lattice, with one element per variable.
 – Assuming there are three variables, \(x, y, \) and \(z \), the elements of the product lattice are of the form \((\ell_x, \ell_y, \ell_z)\).
 – Alternatively, think of the product domain as a context that maps variable names to their “abstract interpretations”

• What are “meet” and “join” in this product lattice?
• What is the height of the product lattice?
Flow Functions

• Consider the node \(x = y \text{ op } z \)
• \(F(\ell_x, \ell_y, \ell_z) = ? \)

- \(F(\ell_x, T, \ell_z) = (T, T, \ell_z) \)
 “If either input might have multiple values the result of the operation might too.”

- \(F(\ell_x, \bot, \ell_z) = (\bot, \bot, \ell_z) \)
 “If either input is undefined the result of the operation is too.”

- \(F(\ell_x, \bot, \ell_z) = (\bot, \bot, \ell_z) \)
 “If either input is undefined the result of the operation is too.”

• \(F(\ell_x, i, j) = (i \text{ op } j, i, j) \)
 “If the inputs are known constants, calculate the output statically.”

• Flow functions for the other nodes are easy…
• Monotonic?
• Distributes over meets?
Iterative Solution

\[
\begin{align*}
&\text{if } x > 0 \\
&y = 1 \\
&z = 2 \\
&x = y + z \\
&\text{iterative solution}
\end{align*}
\]
MOP Solution ≠ Iterative Solution

\[
x = y + z
\]

MOP solution: \((3, 1, 2) \cap (3, 2, 1) = (3, T, T)\)
Why not compute MOP Solution?

• If MOP is better than the iterative analysis, why not compute it instead?
 – ANS: exponentially many paths (even in graph without loops)

• O(n) nodes
• O(n) edges
• O(2^n) paths*
 – At each branch there is a choice of 2 directions

* Incidentally, a similar idea can be used to force ML / Haskell type inference to need to construct a type that is exponentially big in the size of the program!
Dataflow Analysis: Summary

- Many dataflow analyses fit into a common framework.
- Key idea: *Iterative solution* of a system of equations over a *lattice* of constraints.
 - Iteration terminates if flow functions are monotonic.
 - Solution is equivalent to meet-over-paths answer if the flow functions distribute over meet (\sqcap).

- Dataflow analyses as presented work for an “imperative” intermediate representation.
 - The values of temporary variables are updated (“mutated”) during evaluation.
 - Such mutation complicates calculations.
 - SSA = “Single Static Assignment” eliminates this problem, by introducing more temporaries – each one assigned to only once.
 - Next up: Converting to SSA, finding loops and dominators in CFGs.
LOOPS AND DOMINATORS
Loops in Control-flow Graphs

• Taking into account loops is important for optimizations.
 – The 90/10 rule applies, so optimizing loop bodies is important

• Should we apply loop optimizations at the AST level or at a lower representation?
 – Loop optimizations benefit from other IR-level optimizations and vice-versa, so it is good to interleave them.

• Loops may be hard to recognize at the quadruple / LLVM IR level.
 – Many kinds of loops: while, do/while, for, continue, goto…

• Problem: How do we identify loops in the control-flow graph?
Definition of a Loop

- A loop is a set of nodes in the control flow graph.
 - One distinguished entry point called the header.

- Every node is reachable from the header & the header is reachable from every node.
 - A loop is a strongly connected component.

- No edges enter the loop except to the header.
- Nodes with outgoing edges are called loop exit nodes.
Nested Loops

- Control-flow graphs may contain many loops
- Loops may contain other loops:

Control Tree:
The control tree depicts the nesting structure of the program.
Control-flow Analysis

• Goal: Identify the loops and nesting structure of the CFG.

• Control flow analysis is based on the idea of *dominators*:
 • Node A *dominates* node B if the only way to reach B from the start node is through node A.

• An edge in the graph is a *back edge* if the target node dominates the source node.

• A loop contains at least one back edge.
Dominator Trees

- Domination is transitive:
 - if A dominates B and B dominates C then A dominates C
- Domination is anti-symmetric:
 - if A dominates B and B dominates A then A = B
- Every flow graph has a dominator tree
 - The Hasse diagram of the dominates relation
Dominator Dataflow Analysis

- We can define $\text{Dom}[n]$ as a forward dataflow analysis.
 - Using the framework we saw earlier: $\text{Dom}[n] = \text{out}[n]$ where:
 - “A node B is dominated by another node A if A dominates all of the predecessors of B.”
 - $\text{in}[n] := \bigcap_{n' \in \text{pred}[n]} \text{out}[n']$
 - “Every node dominates itself.”
 - $\text{out}[n] := \text{in}[n] \cup \{n\}$

- Formally: $\mathcal{L} = \text{set of nodes ordered by } \subseteq$
 - $T = \{\text{all nodes}\}$
 - $F_n(x) = x \cup \{n\}$
 - \sqcap is \cap
 - Easy to show monotonicity and that F_n distributes over meet.
 - So algorithm terminates and is MOP
Improving the Algorithm

• Dom[b] contains just those nodes along the path in the dominator tree from the root to b:
 – e.g. Dom[8] = {1,2,4,8}, Dom[7] = {1,2,4,5,7}
 – There is a lot of sharing among the nodes

• More efficient way to represent Dom sets is to store the dominator tree.
 – doms[b] = immediate dominator of b

• To compute Dom[b] walk through doms[b]

• Need to efficiently compute intersections of Dom[a] and Dom[b]
 – Traverse up tree, looking for least common ancestor:

• See: “A Simple, Fast Dominance Algorithm” Cooper, Harvey, and Kennedy
Completing Control-flow Analysis

• Dominator analysis identifies \textit{back edges}:
 – Edge \(n \rightarrow h \) where \(h \) dominates \(n \)

• Each back edge has a \textit{natural loop}:
 – \(h \) is the header
 – All nodes reachable from \(h \) that also reach \(n \) without going through \(h \)

• For each back edge \(n \rightarrow h \), find the natural loop:
 – \(\{n' \mid n \text{ is reachable from } n' \text{ in } G - \{h\}\} \cup \{h\} \)

• Two loops may share the same header: merge them

• Nesting structure of loops is determined by set inclusion
 – Can be used to build the control tree
Example Natural Loops

Control Tree:

The control tree depicts the nesting structure of the program.
Uses of Control-flow Information

• Loop nesting depth plays an important role in optimization heuristics.
 – Deeply nested loops pay off the most for optimization.

• Need to know loop headers / back edges for doing
 – loop invariant code motion
 – loop unrolling

• Dominance information also plays a role in converting to SSA form
 – Used internally by LLVM to do register allocation.
Phi nodes
Alloc "promotion"
Register allocation

REVISITING SSA
Single Static Assignment (SSA)

- LLVM IR names (via \texttt{\%uids}) \textit{all} intermediate values computed by the program.
- It makes the order of evaluation explicit.
- Each \texttt{\%uid} is assigned to only once
 - Contrast with the mutable quadruple form
 - Note that dataflow analyses had these kill[n] sets because of updates to variables...
- Naïve implementation of backend: map \texttt{\%uids} to stack slots
- Better implementation: map \texttt{\%uids} to registers (as much as possible)

- Question: How do we convert a source program to make maximal use of \texttt{\%uids}, rather than \texttt{alloca}-created storage?
 - two problems: control flow & location in memory

- Then: How do we convert SSA code to x86, mapping \texttt{\%uids} to registers?
 - Register allocation.
Allocas vs. %UID

- Current compilation strategy:

 int x = 3;
 int y = 0;
 x = x + 1;
 y = x + 2;

 %x = alloca i32
 %y = alloca i32
 store i32* %x, 3
 store i32* %y, 0
 %x1 = load %i32* %x
 %tmp1 = add i32 %x1, 1
 store i32* %x, %tmp1
 %x2 = load %i32* %x
 %tmp2 = add i32 %x2, 2
 store i32* %y, %tmp2

- Directly map source variables into %uids?

 int x = 3;
 int y = 0;
 x = x + 1;
 y = x + 2;

 int x1 = 3;
 int y1 = 0;
 x2 = x1 + 1;
 y2 = x2 + 2;

 %x1 = add i32 3, 0
 %y1 = add i32 0, 0
 %x2 = add i32 %x1, 1
 %y2 = add i32 %x2, 2

- Does this always work?
What about If-then-else?

- How do we translate this into SSA?

```c
int y = ...
int x = ...
int z = ...
if (p) {
    x = y + 1;
} else {
    x = y * 2;
}
z = x + 3;
```

```llvm
entry:
    %y1 = ...
    %x1 = ...
    %z1 = ...
    %p = icmp ...
    br i1 %p, label %then, label %else
then:
    %x2 = add i32 %y1, 1
    br label %merge
else:
    %x3 = mult i32 %y1, 2
    br label %merge
merge:
    %z2 = %add i32 ???, 3
```

- What do we put for ```???
```
Phi Functions

- Solution: φ functions
  - Fictitious operator, used only for analysis
    - implemented by Mov at x86 level
  - Chooses among different versions of a variable based on the path by which control enters the phi node.

```plaintext
%uid = phi <ty> v_1, <label_1>, ..., v_n, <label_n>
```

```plaintext
int y = ...
int x = ...
int z = ...
if (p) {
 x = y + 1;
} else {
 x = y * 2;
}
z = x + 3;
```

entry:
```plaintext
%y1 = ...
%x1 = ...
%z1 = ...
%p = icmp ...
br il %p, label %then, label %else
then:
 %x2 = add i32 %y1, 1
 br label %merge
else:
 %x3 = mult i32 %y1, 2
mergete:
 %x4 = phi i32 %x2, %then, %x3, %else
%z2 = %add i32 %x4, 3
```
Phi Nodes and Loops

• Importantly, the $uids on the right-hand side of a phi node can be defined “later” in the control-flow graph.
  – Means that $uids can hold values “around a loop”
  – Scope of $uids is defined by dominance (discussed soon)

```
entry:
 %y1 = ...
 %x1 = ...
 br label %body

body:
 %x2 = phi i32 %x1, %entry, %x3, %body
 %x3 = add i32 %x2, %y1
 %p = icmp slt i32, %x3, 10
 br i1 %p, label %body, label %after

after:
 ...
```