Announcements

• HW6: Dataflow Analysis
 – Due: Weds. April 26th
 – START EARLY!

• FINAL EXAM: Thursday, May 4th noon – 2:00p.m.
CODE ANALYSIS
Dataflow Analysis

• **Idea**: compute liveness information for all variables simultaneously.
 – Keep track of sets of information about each node

• **Approach**: define *equations* that must be satisfied by any liveness determination.
 – Equations based on “obvious” constraints.

• **Solve the equations** by iteratively converging on a solution.
 – Start with a “rough” approximation to the answer
 – Refine the answer at each iteration
 – Keep going until no more refinement is possible: a *fixpoint* has been reached

• This is an instance of a general framework for computing program properties: dataflow analysis
Dataflow Value Sets for Liveness

- Nodes are program statements, so:
 - use[n] : set of variables used by n
 - def[n] : set of variables defined by n
 - in[n] : set of variables live on entry to n
 - out[n] : set of variables live on exit from n

- Associate in[n] and out[n] with the “collected” information about incoming/outgoing edges

- For Liveness: what constraints are there among these sets?
 - Clearly:
 \[\text{in}[n] \supseteq \text{use}[n] \]

- What other constraints?
Other Dataflow Constraints

• We have: \(\text{in}[n] \supseteq \text{use}[n] \)
 – “A variable must be live on entry to \(n \) if it is used by \(n \)”

• Also: \(\text{in}[n] \supseteq \text{out}[n] - \text{def}[n] \)
 – “If a variable is live on exit from \(n \), and \(n \) doesn’t define it, it is live on entry to \(n \)”
 – Note: here ‘-’ means “set difference”

• And: \(\text{out}[n] \supseteq \text{in}[n'] \) if \(n' \in \text{succ}[n] \)
 – “If a variable is live on entry to a successor node of \(n \), it must be live on exit from \(n \).”
Iterative Dataflow Analysis

- Find a solution to those constraints by starting from a rough guess.
- Start with: \(\text{in}[n] = \emptyset \) and \(\text{out}[n] = \emptyset \)
- They don’t satisfy the constraints:
 - \(\text{in}[n] \supseteq \text{use}[n] \)
 - \(\text{in}[n] \supseteq \text{out}[n] - \text{def}[n] \)
 - \(\text{out}[n] \supseteq \text{in}[n'] \) if \(n' \in \text{succ}[n] \)

- Idea: iteratively re-compute \(\text{in}[n] \) and \(\text{out}[n] \) where forced to by the constraints.
 - Each iteration will add variables to the sets \(\text{in}[n] \) and \(\text{out}[n] \)
 (i.e. the live variable sets will increase monotonically)
- We stop when \(\text{in}[n] \) and \(\text{out}[n] \) satisfy these equations:
 (which are derived from the constraints above)
 - \(\text{in}[n] = \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \)
 - \(\text{out}[n] = \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \)
for all \(n \), \(\text{in}[n] := \emptyset \), \(\text{out}[n] := \emptyset \)
repeat until no change in ‘in’ and ‘out’
 for all \(n \)
 \(\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \)
 \(\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \)
end
end

• Finds a fixpoint of the in and out equations.
 – The algorithm is guaranteed to terminate… Why?
• Why do we start with \(\emptyset \)?
e = 1;
while(x > 0) {
 z = e * e;
 y = e * x;
 x = x - 1;
 if (x & 1) {
 e = z;
 } else {
 e = y;
 }
}
return x;
Example Liveness Analysis

Each iteration update:
\[
\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n']
\]
\[
\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

- Iteration 1:

 \begin{align*}
 \text{in}[2] &= x \\
 \text{in}[3] &= e \\
 \text{in}[4] &= x \\
 \text{in}[5] &= e,x \\
 \text{in}[6] &= x \\
 \text{in}[7] &= x \\
 \text{in}[8] &= z \\
 \text{in}[9] &= y
 \end{align*}

(showing only updates that make a change)
Example Liveness Analysis

Each iteration update:
\[
\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \\
\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

- **Iteration 2:**

 \begin{align*}
 \text{out}[1] &= x \\
 \text{in}[1] &= x \\
 \text{out}[2] &= e, x \\
 \text{in}[2] &= e, x \\
 \text{out}[3] &= e, x \\
 \text{in}[3] &= e, x \\
 \text{out}[5] &= x \\
 \text{out}[6] &= x \\
 \text{out}[7] &= z, y \\
 \text{in}[7] &= x, z, y \\
 \text{out}[8] &= x \\
 \text{in}[8] &= x, z \\
 \text{out}[9] &= x \\
 \text{in}[9] &= x, y \\
 \end{align*}
Each iteration update:

\[
\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \\
\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n])
\]

- **Iteration 3:**

 \[
 \begin{align*}
 \text{out}[1] &= e, x \\
 \text{out}[6] &= x, y, z \\
 \text{in}[6] &= x, y, z \\
 \text{out}[7] &= x, y, z \\
 \text{out}[8] &= e, x \\
 \text{out}[9] &= e, x
 \end{align*}
 \]
Example Liveness Analysis

Each iteration update:
\[\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]
\[\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]

- **Iteration 4:**
 \[\text{out}[5] = x, y, z \]
 \[\text{in}[5] = e, x, z \]
Example Liveness Analysis

Each iteration update:
\[\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \]
\[\text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \]

- **Iteration 5:**
 \[\text{out}[3] = e, x, z \]

Done!
 Improving the Algorithm

• Can we do better?

• Observe: the only way information propagates from one node to another is using: \(\text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \)
 – This is the only rule that involves more than one node

• If a node’s successors haven’t changed, then the node itself won’t change.

• Idea for an improved version of the algorithm:
 – Keep track of which node’s successors have changed
A Worklist Algorithm

- Use a FIFO queue of nodes that might need to be updated.

\[
\text{for all } n, \text{ in}[n] := \emptyset, \text{ out}[n] := \emptyset \\
w = \text{new queue with all nodes} \\
\text{repeat until } w \text{ is empty} \\
\quad \text{let } n = w.\text{pop}() \quad \text{// pull a node off the queue} \\
\quad \text{old}_\text{in} = \text{in}[n] \quad \text{// remember old in}[n] \\
\quad \text{out}[n] := \bigcup_{n' \in \text{succ}[n]} \text{in}[n'] \\
\quad \text{in}[n] := \text{use}[n] \cup (\text{out}[n] - \text{def}[n]) \\
\quad \text{if } (\text{old}_\text{in} \neq \text{in}[n]), \quad \text{// if in}[n] \text{ has changed} \\
\quad \quad \text{for all } m \text{ in pred}[n], \text{ w.push}(m) \quad \text{// add to worklist} \\
\text{end}
\]
REGISTER ALLOCATION
Register Allocation Problem

• Given: an IR program that uses an unbounded number of temporaries
 – e.g. the uids of our LLVM programs

• Find: a mapping from temporaries to machine registers such that
 – program semantics is preserved (i.e. the behavior is the same)
 – register usage is maximized
 – moves between registers are minimized
 – calling conventions / architecture requirements are obeyed

• Stack Spilling
 – If there are k registers available and m > k temporaries are live at the same time, then not all of them will fit into registers.
 – So: "spill" the excess temporaries to the stack.
Linear-Scan Register Allocation

Simple, greedy register-allocation strategy:

1. Compute liveness information: \(\text{live}(x) \)
 - recall: \(\text{live}(x) \) is the set of uids that are live on entry to \(x \)'s definition
2. Let \(\text{pal} \) be the set of usable registers
 - usually reserve a couple for spill code [our implementation uses rax,rcx]
3. Maintain "layout" \(\text{uid}_{-}\text{loc} \) that maps uids to locations
 - locations include registers and stack slots \(n \), starting at \(n=0 \)
4. Scan through the program. For each instruction that defines a uid \(x \)
 - \(\text{used} = \{ r \mid \text{reg } r = \text{uid}_{-}\text{loc}(y) \text{ s.t. } y \in \text{live}(x) \} \)
 - \(\text{available} = \text{pal} - \text{used} \)
 - If \(\text{available} \) is empty: // no registers available, spill
 \(\text{uid}_{-}\text{loc}(x) := \text{slot } n \text{ ; } n = n + 1 \)
 - Otherwise, pick \(r \) in \(\text{available} \): // choose an available register
 \(\text{uid}_{-}\text{loc}(x) := \text{reg } r \)
HW 6 implements two naive register allocation strategies:

- **no_reg_layout**: spill all registers

- **simple_layout**: use registers but without taking liveness into account

Your job: do "better" than these.

Quality Metric:
- registers other than rbp count positively
- rbp counts negatively (it is used for spilling)
- shorter code is better (each line counts as 2 registers)

Linear scan register allocation should suffice
- but... can we do better?
GRAPH COLORING
Register Allocation

• Basic process:
 1. Compute liveness information for each temporary.
 2. Create an interference graph:
 – Nodes are temporary variables.
 – There is an edge between node n and m if n is live at the same time as m
 3. Try to color the graph
 – Each color corresponds to a register
 4. In case step 3. fails, “spill” a register to the stack and repeat the whole process.
 5. Rewrite the program to use registers
Interference Graphs

- Nodes of the graph are `%uids`
- Edges connect variables that *interfere* with each other
 - Two variables interfere if their live ranges intersect (i.e. there is an edge in the control-flow graph across which they are both live).
- Register assignment is a *graph coloring*.
 - A graph coloring assigns each node in the graph a color (register)
 - Any two nodes connected by an edge must have different colors.
- Example:

```
// live = {%a}
%b1 = add i32 %a, 2
// live = {%a,%b1}
%c = mult i32 %b1, %b1
// live = {%a,%c}
%b2 = add i32 %c, 1
// live = {%a,%b2}
%ans = mult i32 %b2, %a
// live = {%ans}
return %ans;
```
Register Allocation Questions

• Can we efficiently find a k-coloring of the graph whenever possible?
 – Answer: in general the problem is NP-complete (it requires search)
 – But, we can do an efficient approximation using heuristics.

• How do we assign registers to colors?
 – If we do this in a smart way, we can eliminate redundant MOV instructions.

• What do we do when there aren’t enough colors/registers?
 – We have to use stack space, but how do we do this effectively?
• Kempe [1879] provides this algorithm for K-coloring a graph.
• It’s a recursive algorithm that works in three steps:
 • Step 1: Find a node with degree < K and cut it out of the graph.
 – Remove the nodes and edges.
 – This is called *simplifying* the graph
 • Step 2: Recursively K-color the remaining subgraph
 • Step 3: When remaining graph is colored, there must be at least one free color available for the deleted node (since its degree was < K). Pick such a color.
Example: 3-color this Graph

Recursing Down the Simplified Graphs
Example: 3-color this Graph

Assigning Colors on the way back up.
Failure of the Algorithm

• If the graph cannot be colored, it will simplify to a graph where every node has at least K neighbors.
 – This can happen even when the graph is K-colorable!
 – This is a symptom of NP-hardness (it requires search)

• Example: When trying to 3-color this graph:
Spilling

- Idea: If we can’t K-color the graph, we need to store one temporary variable on the stack.
- Which variable to spill?
 - Pick one that isn’t used very frequently
 - Pick one that isn’t used in a (deeply nested) loop
 - Pick one that has high interference (since removing it will make the graph easier to color)
- In practice: some weighted combination of these criteria

- When coloring:
 - Mark the node as spilled
 - Remove it from the graph
 - Keep recursively coloring
Spilling, Pictorially

- Select a node to spill
- Mark it and remove it from the graph
- Continue coloring
Optimistic Coloring

- Sometimes it is possible to color a node marked for spilling.
 - If we get “lucky” with the choices of colors made earlier.

- Example: When 2-coloring this graph:

 - Even though the node was marked for spilling, we can color it.
 - So: on the way down, mark for spilling, but don’t actually spill…
Accessing Spilled Registers

• If optimistic coloring fails, we need to generate code to move the spilled temporary to & from memory.

• Option 1: Reserve registers specifically for moving to/from memory.
 – Con: Need at least two registers (one for each source operand of an instruction), so decreases total # of available registers by 2.
 – Pro: Only need to color the graph once.
 – Not good on X86 (especially 32bit) because there are too few registers & too many constraints on how they can be used.

• Option 2: Rewrite the program to use a new temporary variable, with explicit moves to/from memory.
 – Pro: Need to reserve fewer registers.
 – Con: Introducing temporaries changes live ranges, so must recompute liveness & recolor graph
Example Spill Code

• Suppose temporary t is marked for spilling to stack slot $[rbp+offs]$

• Rewrite the program like this:

```plaintext
t = a op b;  \quad t = a op b  // defn. of t
...          \quad ...
\quad ...
\quad ...
\quad ...
\quad ...
\quad ...
\quad ...
```

• Here, t_{37} and t_{38} are freshly generated temporaries that replace t for different uses of t.

• Rewriting the code in this way breaks t’s live range up: t, t_{37}, t_{38} are only live across one edge
Precolored Nodes

• Some variables must be pre-assigned to registers.
 – E.g. on X86 the multiplication instruction: IMul must define %rax
 – The “Call” instruction should kill the caller-save registers %rax, %rcx, %rdx.
 – Any temporary variable live across a call interferes with the caller-save registers.

• To properly allocate temporaries, we treat registers as nodes in the interference graph with pre-assigned colors.
 – Pre-colored nodes can’t be removed during simplification.
 – Trick: Treat pre-colored nodes as having “infinite” degree in the interference graph – this guarantees they won’t be simplified.
 – When the graph is empty except the pre-colored nodes, we have reached the point where we start coloring the rest of the nodes.
Picking Good Colors

• When choosing colors during the coloring phase, any choice is semantically correct, but some choices are better for performance.

• Example:
 \texttt{movq t1, t2}
 – If \texttt{t1} and \texttt{t2} can be assigned the same register (color) then this move is redundant and can be eliminated.

• A simple color choosing strategy that helps eliminate such moves:
 – Add a new kind of “move related” edge between the nodes for \texttt{t1} and \texttt{t2} in the interference graph.
 – When choosing a color for \texttt{t1} (or \texttt{t2}), if possible pick a color of an already colored node reachable by a move-related edge.
Example Color Choice

- Consider 3-coloring this graph, where the dashed edge indicates that there is a Mov from one temporary to another.

- After coloring the rest, we have a choice:
 - Picking yellow is better than red because it will eliminate a move.
Coalescing Interference Graphs

- A more aggressive strategy is to **coalesce** nodes of the interference graph if they are connected by move-related edges.
 - Coalescing the nodes *forces* the two temporaries to be assigned the same register.

- Idea: interleave simplification and coalescing to maximize the number of moves that can be eliminated.
- Problem: coalescing can sometimes increase the degree of a node.
Conservative Coalescing

- Two strategies are guaranteed to preserve the k-colorability of the interference graph.

 - *Brigg’s strategy:* It's safe to coalesce x & y if the resulting node will have fewer than k neighbors (with degree $\geq k$).

 - *George’s strategy:* We can safely coalesce x & y if for every neighbor t of x, either t already interferes with y or t has degree < k.
Complete Register Allocation Algorithm

1. Build interference graph (precolor nodes as necessary).
 - Add move related edges
2. Reduce the graph (building a stack of nodes to color).
 1. Simplify the graph as much as possible without removing nodes that are move related (i.e. have a move-related neighbor). Remaining nodes are high degree or move-related.
 2. Coalesce move-related nodes using Brigg’s or George’s strategy.
 3. Coalescing can reveal more nodes that can be simplified, so repeat 2.1 and 2.2 until no node can be simplified or coalesced.
 4. If no nodes can be coalesced freeze (remove) a move-related edge and keep trying to simplify/coalesce.
3. If there are non-precolored nodes left, mark one for spilling, remove it from the graph and continue doing step 2.
4. When only pre-colored node remain, start coloring (popping simplified nodes off the top of the stack).
 1. If a node must be spilled, insert spill code as on slide 14 and rerun the whole register allocation algorithm starting at step 1.
Last details

• After register allocation, the compiler should do a peephole optimization pass to remove redundant moves.
• Some architectures specify calling conventions that use registers to pass function arguments.
 – It’s helpful to move such arguments into temporaries in the function prelude so that the compiler has as much freedom as possible during register allocation. (Not an issue on X86, though.)