Game-playing AIs: Games and Adversarial Search FINAL SET
(w/ $\alpha\beta$ pruning study examples)

AIMA 5.1-5.2
Games: Outline of Unit

Part I: Games as Search
- Motivation
- Game-playing AI successes
- Game Trees
- Evaluation Functions

Part II: Adversarial Search
- The Minimax Rule
- Alpha-Beta Pruning
The Minimax Rule (AIMA 5.2)
The Minimax Rule: `Don’t play hope chess’

Idea: Make the best move for MAX assuming that MIN always replies with the best move for MIN

Easily computed by a recursive process
- The backed-up value of each node in the tree is determined by the values of its children:
 - For a MAX node, the backed-up value is the maximum of the values of its children (i.e. the best for MAX)
 - For a MIN node, the backed-up value is the minimum of the values of its children (i.e. the best for MIN)
The Minimax Procedure

Until game is over:

1. Start with the current position as a MAX node.
2. Expand the game tree a fixed number of ply.
3. Apply the evaluation function to the leaf positions.
4. Calculate back-up values bottom-up.
5. Pick the move assigned to MAX at the root
6. Wait for MIN to respond
2-ply Example: Backing up values

MAX
MIN

Evaluation function value

This is the move selected by minimax
What if MIN does not play optimally?

- Definition of optimal play for MAX assumes MIN plays optimally:
 - Maximizes worst-case outcome for MAX.
 - (Classic game theoretic strategy)

- But if MIN does not play optimally, MAX will do even better. [Theorem-not hard to prove]
Comments on Minimax Search

- Depth-first search with fixed number of ply m as the limit.
 - $O(b^m)$ time complexity – *As usual!*
 - $O(bm)$ space complexity

- Performance will depend on
 - the quality of the static evaluation function (expert knowledge)
 - depth of search (computing power and search algorithm)

- Differences from normal state space search
 - Looking to make *one* move only, despite deeper search
 - No cost on arcs – costs from backed-up static evaluation
 - MAX can’t be sure how MIN will respond to his moves

- Minimax forms the basis for other game tree search algorithms.
Alpha-Beta Pruning (AIMA 5.3)

Many slides adapted from Richard Lathrop, USC/ISI, CS 271
Alpha-Beta Pruning

- A way to improve the performance of the Minimax Procedure
- Basic idea: “If you have an idea which is surely bad, don’t take the time to see how truly awful it is” ~ Pat Winston

- We don’t need to compute the value at this node.
- No matter what it is it can’t effect the value of the root node.
Alpha-Beta Pruning II

- During Minimax, keep track of two additional values:
 - \(\alpha \): MAX’s current *lower* bound on MAX’s outcome
 - \(\beta \): MIN’s current *upper* bound on MIN’s outcome

- MAX will never allow a move that could lead to a worse score (for MAX) than \(\alpha \)
- MIN will never allow a move that could lead to a better score (for MAX) than \(\beta \)

- Therefore, stop evaluating a branch whenever:
 - When evaluating a MAX node: a value \(v \geq \beta \) is backed-up
 — MIN will never select that MAX node
 - When evaluating a MIN node: a value \(v \leq \alpha \) is found
 — MAX will never select that MIN node
Alpha-Beta Pruning IIIa

- Based on observation that for all viable paths utility value $f(n)$ will be $\alpha \leq f(n) \leq \beta$

- Initially, $\alpha = -\infty$, $\beta = \infty$

- As the search tree is traversed, the possible utility value window shrinks as α increases, β decreases
Alpha-Beta Pruning IIIc

- Whenever the current ranges of alpha and beta no longer overlap, it is clear that the current node is a dead end.
Tic-Tac-Toe Example with Alpha-Beta Pruning

Figure 4.17 Two-ply minimax applied to the opening move of tic-tac-toe.
Alpha-beta Algorithm: In detail

- Depth first search (usually bounded, with static evaluation)
 - only considers nodes along a single path from root at any time

 \[\alpha = \text{highest-value found at any point of current path for MAX} \]
 \[\text{(initially, } \alpha = -\infty) \]
 \[\beta = \text{lowest-value found at any point of current path for MIN} \]
 \[\text{(initially, } \beta = +\infty) \]

- Pass current values of \(\alpha \) and \(\beta \) \textit{down} to child nodes during search.

- Update values of \(\alpha \) and \(\beta \) during search:
 - MAX updates \(\alpha \) at MAX nodes
 - MIN updates \(\beta \) at MIN nodes

- Prune remaining branches at a node when \(\alpha \geq \beta \)
When to Prune

Prune whenever \(\alpha \geq \beta \).

- Prune below a Max node when its \(\alpha \) value becomes \(\geq \) the \(\beta \) value of its ancestors.
 - **Max nodes update** \(\alpha \) based on children’s returned values.
 - Idea: Player MIN at node above won’t pick that value anyway, he can force a worse value.

- Prune below a Min node when its \(\beta \) value becomes \(\leq \) the \(\alpha \) value of its ancestors.
 - **Min nodes update** \(\beta \) based on children’s returned values.
 - Idea: Player MAX at node above won’t pick that value anyway; she can do better.
Pseudocode for Alpha-Beta Algorithm

```plaintext
function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game

ν ← MAX-VALUE(state, -∞, +∞)

return an action in ACTIONS(state) with value ν
```
Pseudocode for Alpha-Beta Algorithm

function ALPHA-BETA-SEARCH(state) **returns** an action

inputs: state, current state in game

\[v \leftarrow \text{MAX-VALUE}(state, -\infty, +\infty) \]

return an action in ACTIONS(state) with value \(v \)

function MAX-VALUE(state, \(\alpha \), \(\beta \)) **returns** a utility value

if TERMINAL-TEST(state) **then return** UTILITY(state)

\[v \leftarrow -\infty \]

for \(a \) in ACTIONS(state) **do**

\[v \leftarrow \text{MAX}(v, \text{MIN-VALUE(Result(s,a), \(\alpha \), \(\beta \)))} \]

if \(v \geq \beta \) **then return** \(v \)

\[\alpha \leftarrow \text{MAX}(\alpha, v) \]

return \(v \)
Alpha-Beta Algorithm II

function MIN-VALUE(state, α, β) returns a utility value
if TERMINAL-TEST(state) then return UTILITY(state)
v ← +∞
for a, s in SUCCESSORS(state) do
 v ← MIN(v, MAX-VALUE(s, α, β))
 if v ≤ α then return v
 β ← MIN(β, v)
return v
An Alpha-Beta Example

Do DF-search until first leaf

α, β, initial values

$\alpha = -\infty$

$\beta = +\infty$

α, β, passed to kids

$\alpha = -\infty$

$\beta = +\infty$
Alpha-Beta Example (continued)

MIN updates β, based on kids

\[\alpha = -\infty \]
\[\beta = 3 \]
Alpha-Beta Example (continued)

MIN updates β, based on kids.
No change.
MAX updates α, based on kids.

$\alpha = 3$

$\beta = +\infty$

3 is returned as node value.
Alpha-Beta Example (continued)

\[\alpha = 3 \]
\[\beta = +\infty \]

\(\alpha, \beta, \text{ passed to kids} \)

\(\alpha = 3 \)
\[\beta = +\infty \]
Alpha-Beta Example (continued)

MAX

MIN

\[\alpha = 3 \]
\[\beta = +\infty \]

MIN updates \(\beta \), based on kids.

\[\alpha = 3 \]
\[\beta = 2 \]
Alpha-Beta Example (continued)

\[\alpha = 3 \]
\[\beta = +\infty \]

so prune.

\[\alpha = 3 \]
\[\beta = 2 \]
\[\alpha \geq \beta, \text{ so prune.} \]
MAX updates α, based on kids.
No change.

2 is returned as node value.
Alpha-Beta Example (continued)

Here is an example of an Alpha-Beta pruning, starting with the root node. The values for \(\alpha \) and \(\beta \) are passed down to the children, where they are used to prune the search. In this example, the maximum node is selected, and the upper bound \(\beta = +\infty \) is updated as \(\alpha = 3 \). The minimum nodes then compare their values to \(\alpha \) and prune accordingly.
Alpha-Beta Example (continued)

MIN updates β, based on kids.

$\alpha = 3$

$\beta = +\infty$

$\alpha = 3$

$\beta = 14$
Alpha-Beta Example (continued)

MIN updates β, based on kids.

$\alpha = 3$
$\beta = +\infty$

MIN updates β, based on kids.

$\alpha = 3$
$\beta = 5$
Alpha-Beta Example (continued)

\[\alpha = 3 \]
\[\beta = +\infty \]

2 is returned as node value.
Max now makes it’s best move, as computed by Alpha-Beta.
Effectiveness of Alpha-Beta Pruning

- Guaranteed to compute same root value as Minimax
- **Worst case:** no pruning, same as Minimax (O(b^d))
- **Best case:** when each player’s best move is the first option examined, examines only O(b^{d/2}) nodes, allowing to search twice as deep!
When best move is the first examined, examines only $O(b^{d/2})$ nodes….

- So: run Iterative Deepening search, sort by value last iteration.
- So: expand captures first, then threats, then forward moves, etc.

$O(b^{(d/2)})$ is the same as having a branching factor of \sqrt{b},
- Since $(\sqrt{b})^d = b^{(d/2)}$
- e.g., in chess go from $b \sim 35$ to $b \sim 6$

- For Deep Blue, alpha-beta pruning reduced the average branching factor from 35-40 to 6, as expected, doubling search depth
Real systems use a few tricks

- Expand the proposed solution a little farther
 - Just to make sure there are no surprises
- Learn better board evaluation functions
 - E.g., for backgammon
- Learn model of your opponent
 - E.g., for poker
- Do stochastic search
 - E.g., for go
Chinook and Deep Blue

- **Chinook**
 - the World Man-Made Checkers Champion, developed at the University of Alberta.
 - Competed in human tournaments, earning the right to play for the human world championship, and defeated the best players in the world.

- **Deep Blue**
 - Defeated world champion Gary Kasparov 3.5-2.5 in 1997 after losing 4-2 in 1996.
 - Uses a parallel array of 256 special chess-specific processors
 - Evaluates 200 billion moves every 3 minutes; 12-ply search depth
 - Expert knowledge from an international grandmaster.
 - 8000 factor evaluation function tuned from hundreds of thousands of grandmaster games
 - Tends to play for tiny positional advantages.
FOR STUDY....
Example

-which nodes can be pruned?
Answer to Example

-which nodes can be pruned?

Answer: NONE! Because the most favorable nodes for both are explored last (i.e., in the diagram, are on the right-hand side).
Second Example
(the exact mirror image of the first example)

-which nodes can be pruned?
Answer to Second Example
(the exact mirror image of the first example)

-which nodes can be pruned?

Answer: **LOTS!** Because the most favorable nodes for both are explored **first** (i.e., in the diagram, are on the left-hand side).