Outline

- Automated Propositional Proof Methods
 1. Resolution
 2. A Practical Method: Walksat

Proof methods

I. Application of Inference Rules
 - Each application yields the legitimate (sound) generation of a new sentence from old
 - Proof = a sequence of sound inference rule applications
 - Proofs can be found using search
 - Inference Rules as operators for a standard search algorithm
 - Typically require transformation of sentences into a normal form
 - Example: Resolution

II. Model Checking Methods
 - Examples:
 - Truth Table Enumeration (tests satisfiability, validity)
 - WalkSat (tests satisfiability)

Resolution

Applies to a DB of Sentences in Conjunctive Normal Form (CNF)

A sentence is valid if it is true in all models,
 e.g., \(A \lor \lnot A \lor A \rightarrow A \land (A \lor (A \rightarrow B)) \rightarrow B \)

Validity is connected to inference via the Deduction Theorem:

\(KB \models \alpha \) if and only if \((KB \rightarrow \alpha) \) is valid

A sentence is satisfiable if it is true in some model
 e.g., \(A \lor B \lor C \)

A sentence is unsatisfiable if it is false in all models
 e.g., \(A \land \lnot A \)

Satisfiability is connected to inference via the following:

\(KB \not\models \alpha \) if and only if \((KB \land \lnot \alpha) \) is unsatisfiable
 (there is no model for which KB=true and \(\alpha \) is false)

Soundness of resolution inference rule

If \(\xi = \lnot \eta \)

\[\neg((\xi \lor \ldots \lor \xi_i \lor \ldots \lor \xi_k) \Rightarrow \xi) \]

\[\neg\eta \Rightarrow (\xi_i \lor \ldots \lor \xi_{i+1} \lor \ldots \lor \xi_k) \]

Given that

\[(\alpha \Rightarrow \beta) = (\neg \alpha \lor \beta) \]
Proof by Resolution: Proof by contradiction

- I.E.: prove α by showing $KB \land \neg \alpha$ unsatisfiable
- Example: $KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$
 - Prove α: $\neg P_{1,2}$
- KB in Conjunctive Normal Form:
 $$(-B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (-P_{1,2} \lor B_{1,1}) \land (-P_{2,1} \lor B_{1,1})$$
- Negate α: $P_{1,2}$

Conversion to CNF: General Procedure

Example: $B_{1,1} \iff (P_{1,2} \lor P_{2,1})$

1. Eliminate \iff, replacing $\alpha \iff \beta$ with $(\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$.
 $$(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})$$
2. Eliminate \Rightarrow, replacing $\alpha \Rightarrow \beta$ with $\neg \alpha \lor \beta$.
 $$(-B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (-P_{1,2} \lor P_{2,1} \lor B_{1,1})$$
3. Move \neg inwards using de Morgan’s rules and (often, but not here) double-negation:
 $$(-B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \lor P_{2,1}) \land B_{1,1})$$
4. Flatten by applying distributivity law (\land over \lor):
 $$(-B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \lor P_{2,1}) \land B_{1,1})$$

Resolution algorithm

- Iteratively apply resolution to all pairs of clauses

Resolution example

$KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$

$\alpha = \neg P_{1,2}$

The WalkSAT algorithm

- A practical, simple algorithm to determine satisfiability for propositional logic
- Sound
- Incomplete
- A hill-climbing search algorithm
- Balance between greediness and randomness
 - Evaluation function: The \min-conflict heuristic of minimizing the number of unsatisfied clauses
 - Uses random jumps to escape local minima
The WalkSAT algorithm

Function WalkSAT(clauses, n, max-flips) returns a satisfying model or failure:

Inputs:
- clauses: a set of clauses in propositional logic
- n: the probability of choosing to do a "random walk" move
- max-flips: number of flips allowed before giving up

1. model← a random assignment of true/false to the symbols in clauses
2. Let r← 1 to max-flips do
3. if model satisfies clauses then return model
4. else select a randomly selected clause from clauses that is false in model
5. with probability n flip the value of a randomly selected symbol from clause
6. else flip whichever symbol in clauses maximizes the number of satisfied clauses
7. return failure.

Hard satisfiability problems

- Consider random 3-CNF sentences, e.g.,
 \[(\neg D \vee \neg B \vee C) \land (B \vee \neg A \vee \neg C) \land (\neg C \vee \neg B \vee E) \land (E \vee \neg D \vee B) \land (B \vee E \vee C)\]

 \[m = \text{number of clauses} \]
 \[n = \text{number of symbols} \]

- Hard problems seem to cluster near \[m/n = 4.3\] (critical point)

 Here:
 \[m=4, n=\{A,B,C,D,E\} = 5 \]
 \[m/n = 4/5 = .8\]

Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, \(n = 50\)

Encoding Wumpus in propositional logic

- 4x4 Wumpus World
 - The "physics" of the game
 \[-B_{1,1} \Rightarrow (P_{2,2} \lor P_{2,3} \lor P_{2,4} \lor P_{3,4})\]
 \[-S_{1,1} \Rightarrow (W_{2,2} \lor W_{2,3} \lor W_{4,2} \lor W_{4,3} \lor W_{4,4})\]
 - At least one wumpus on board
 \[-W_{1,1} \lor W_{1,2} \lor \ldots \lor W_{4,3} \lor W_{4,4}\]
 - A most one wumpus on board (for any two squares, one is free)
 \[-n^2\text{ rules like:}\]
 \[W_{1,1} \Rightarrow \neg(W_{2,1} \lor W_{2,2} \lor \ldots \lor W_{4,4})\]
 - No instant death:
 \[-P_{1,1}\]
 \[-W_{1,1}\]
Expressiveness limitation of propositional logic

- KB contains "physics" sentences for every single square
- Rapid proliferation of clauses

Forward and backward chaining

- **Horn Clause** (restricted)
 - Horn clause:
 - proposition symbol
 - (conjunction of symbols) \(\Rightarrow \) symbol
 - E.g., \(A \ B \ B \Rightarrow A \ C \ D \Rightarrow B \)
- **KB = conjunction of Horn clauses**
 E.g., \(C \land (B \Rightarrow A) \land (C \land D \Rightarrow B) \)

Modus Ponens (for Horn Form): complete for Horn KBs

\[
\alpha_1, \ldots, \alpha_n, \alpha_1 \land \ldots \land \alpha_n \Rightarrow \beta
\]

- Used with forward chaining or backward chaining.
- These algorithms are very natural and run in linear time.

Forward chaining

- Idea: Apply modus ponens to any Horn Clause whose premises are satisfied in the KB
 - Add its conclusion to the KB, until query is found
 - Easy to visualize informally in graphical form:

```
P \Rightarrow Q
L \land M \Rightarrow P
B \land L \Rightarrow M
A \land P \Rightarrow L
A \land B \Rightarrow L
A
B
```

Forward chaining algorithm

Function PL-FC-ENTAILS(\(q \)) returns true or false:

local variables:
 const, a table, indexed by clause, initially the number of premises
 inferred, a table, indexed by symbol, each entry initially false
 agenda, a list of symbols, initially the symbols known to be true

while agenda is not empty do
 p = Pop(agenda)
 unless inferred[p] = true
 for each Horn clause \(c \) whose premise \(p \) appears do
 e = \(c \land \neg p \Rightarrow \beta \)
 if \(e \land \neg p \) then do
 if Head(e) \(\equiv q \) then return true
 P = P \land Head(e)
 agenda += P
 end
 end
 end
return false
Proof of completeness

FC derives every atomic sentence that is entailed by KB.

1. FC reaches a fixed point where no new atomic sentences are derived.
2. Consider the final state as a model m, assigning true/false to symbols.
3. Every clause in the original KB is true in m.
4. Hence m is a model of KB.
5. If $KB \vdash q$, q is true in every model of KB, including m.

Backward chaining

Idea: work backwards from the query q:

- to prove q by BC, check if q is known already, or
- prove by BC all premises of some rule concluding q.

Avoid loops: check if new subgoal is already on the goal stack.

Avoid repeated work: check if new subgoal:
1. has already been proved true, or
2. has already failed.

Backward chaining example
Forward vs. backward chaining

- **FC** is *data-driven*, automatic, unconscious processing,
 - e.g., object recognition, routine decisions
- **May do lots of work that is irrelevant to the goal**
- **BC** is *goal-driven*, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- **Complexity of BC can be much less than linear in size of KB**