Proof Methods for Propositional Logic
Outline

- **Automated Propositional Proof Methods**
 1. Resolution
 2. A Practical Method: Walksat
Proof methods

I. Application of Inference Rules
 • Each application yields the legitimate (*sound*) generation of a new sentence from old
 • *Proof* = a sequence of sound inference rule applications
 • Proofs can be found using search
 — *Inference Rules as operators for a standard search algorithm*
 • Typically require transformation of sentences into a *normal form*
 • Example: *Resolution*

II. Model Checking Methods
 • Examples:
 — Truth Table Enumeration (tests satisfiability, validity)
 — WalkSat (tests satisfiability)
Resolution

Conjunctive Normal Form (CNF)

conjunction of clauses of disjunctions of literals

E.g., \((A \lor \neg B) \land (B \lor \neg C \lor \neg D)\)

- **Resolution** inference rule (for CNF):

\[
\ell_1 \lor \ldots \lor \ell_{i-1} \lor \ell_i \lor \ell_{i+1} \lor \ldots \lor \ell_k, \quad m_1 \lor \ldots \lor m_{j-1} \lor m_j \lor m_{j+1} \lor \ldots \lor m_n
\]

\[
\ell_1 \lor \ldots \lor \ell_{i-1} \lor \ell_{i+1} \lor \ldots \lor \ell_k \lor m_1 \lor \ldots \lor m_{j-1} \lor m_j \lor m_{j+1} \lor \ldots \lor m_n
\]

where \(\ell_i\) and \(m_j\) are **complementary literals**, i.e. \(\ell_i = \neg m_j\)

- **Resolution** is *sound* and *complete* for propositional logic

CIS 391-Intro to AI
For convenience: Logical equivalence

- To manipulate logical sentences we need some rewrite rules.
- Two sentences are **logically equivalent** iff they are true in same models: $\alpha \equiv \beta$ iff $\alpha \models \beta$ and $\beta \models \alpha$

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \rightarrow \beta) & \equiv (\neg \beta \rightarrow \neg \alpha) \quad \text{contraposition} \\
(\alpha \rightarrow \beta) & \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \leftrightarrow \beta) & \equiv ((\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) \quad \text{de Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]

I told you you needed to know these!
Resolution

Soundness of resolution inference rule:

\[\text{if } \neg \mathcal{L}_i = \neg \mathcal{M}_j \]

\[
\neg (\mathcal{L}_1 \lor \cdots \lor \mathcal{L}_{i-1} \lor \mathcal{L}_{i+1} \lor \cdots \lor \mathcal{L}_k) \implies \mathcal{L}_i
\]

\[
\neg \mathcal{M}_j \implies (\mathcal{M}_1 \lor \cdots \lor \mathcal{M}_{j-1} \lor \mathcal{M}_{j+1} \lor \cdots \lor \mathcal{M}_n)
\]

\[
\neg (\mathcal{L}_1 \lor \cdots \lor \mathcal{L}_{i-1} \lor \mathcal{L}_{i+1} \lor \cdots \lor \mathcal{L}_k) \implies (\mathcal{M}_1 \lor \cdots \lor \mathcal{M}_{j-1} \lor \mathcal{M}_{j+1} \lor \cdots \lor \mathcal{M}_n)
\]

Given that \((\alpha \implies \beta) \equiv (\neg \alpha \lor \beta)\)
Conversion to CNF: General Procedure

Example: \(B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \)

1. **Eliminate** \(\iff \), replacing \(\alpha \iff \beta \) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha) \).
 \[
 (B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1})
 \]

2. **Eliminate** \(\Rightarrow \), replacing \(\alpha \Rightarrow \beta \) with \(\neg \alpha \lor \beta \).
 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg(P_{1,2} \lor P_{2,1}) \lor B_{1,1})
 \]

3. **Move** \(\neg \) **inwards** using de Morgan's rules and (often, but not here) double-negation:
 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1})
 \]

4. **Flatten** by applying distributivity law (\(\land \) over \(\lor \)):
 \[
 (\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})
 \]
Review: Validity and satisfiability

A sentence is **valid** if it is true in all models,
e.g. *True, A ∨ ¬A, A → A, (A ∧ (A → B)) → B*

Validity is connected to inference via the **Deduction Theorem**:
KB ⊢ α if and only if *(KB → α)* is valid

A sentence is **satisfiable** if it is true in some model
e.g. *A ∨ B, C*

A sentence is **unsatisfiable** if it is false in all models
e.g. *A ∧ ¬A*

Satisfiability is connected to inference via the following:
KB ⊢ α if and only if *(KB ∧ ¬α)* is unsatisfiable
(there is no model for which KB=true and α is false)
Resolution algorithm

- Proof by contradiction, i.e., prove α by showing $KB \land \neg \alpha$ unsatisfiable

```python
function PL-RESOLUTION(KB, $\alpha$) returns true or false
    clauses $\leftarrow$ the set of clauses in the CNF representation of $KB \land \neg \alpha$
    new $\leftarrow \{\}$
    loop do
        for each $C_i, C_j$ in clauses do
            resolvents $\leftarrow$ PL-RESOLVE($C_i, C_j$)
            if resolvents contains the empty clause then return true
            new $\leftarrow$ new $\cup$ resolvents
        if new $\subseteq$ clauses then return false
        clauses $\leftarrow$ clauses $\cup$ new
    $A \land \neg A$ will have just been resolved
```
Resolution example

- $KB = (B_{1,1} \iff (P_{1,2} \lor P_{2,1})) \land \neg B_{1,1}$
 $\alpha = \neg P_{1,2}$
The WalkSAT algorithm

- A practical, simple algorithm for propositional inference
- Sound
- Incomplete
- A hill-climbing search algorithm
- Balance between greediness and randomness
 - Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
 - Uses random jumps to escape local minima
The WalkSAT algorithm

```python
function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure

inputs: clauses, a set of clauses in propositional logic
         p, the probability of choosing to do a “random walk” move
         max-flips, number of flips allowed before giving up

model ← a random assignment of true/false to the symbols in clauses

for i = 1 to max-flips do
    if model satisfies clauses then return model
        clause ← a randomly selected clause from clauses that is false in model
        with probability p flip the value in model of a randomly selected symbol
        from clause
    else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure
```
Hard satisfiability problems

- Consider random 3-CNF sentences. e.g.,
 \[(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)\]

 \(m = \text{number of clauses}\)
 \(n = \text{number of symbols}\)

- Hard problems seem to cluster near \(m/n = 4.3\) (critical point)

- Here:
 \(m=4, n=|\{A,B,C,D,E\}| = 5\)
 \(m/n = 4/5 = .8\)
Hard satisfiability problems

\[\text{Pr(satisfiable)} \]

\[\frac{\text{Clause/symbol ratio } m/n}{0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8} \]

\[0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1 \]
Hard satisfiability problems

- Median runtime for 100 satisfiable random 3-CNF sentences, $n = 50$
Encoding Wumpus in propositional logic

• **4x4 Wumpus World**
 - The “physics” of the game
 - \(B_{x,y} \Leftrightarrow (P_{x,y+1} \lor P_{x,y-1} \lor P_{x+1,y} \lor P_{x-1,y}) \)
 - \(S_{x,y} \Leftrightarrow (W_{x,y+1} \lor W_{x,y-1} \lor W_{x+1,y} \lor W_{x-1,y}) \)
 - At least one wumpus on board
 - \(W_{1,1} \lor W_{1,2} \lor \cdots \lor W_{4,3} \lor W_{4,4} \)
 - A most one wumpus on board (for any two squares, one is free)
 - \(n^2 \) rules like: \(W_{1,1} \Rightarrow \lnot (W_{1,2} \lor W_{1,3} \lor \cdots \lor W_{4,4}) \)
 - No instant death:
 - \(\neg P_{1,1} \)
 - \(\neg W_{1,1} \)
function PL-WUMBUS-AGENT(percept) returns an action
inputs: percept, a list, [stench, breeze, glitter]
static: KB, initially containing the “physics” of the wumpus world
 x, y, orientation, the agent’s position (init. [1,1]) and orient. (init. right)
 visited, an array indicating which squares have been visited, initially false
 action, the agent’s most recent action, initially null
 plan, an action sequence, initially empty

update x, y, orientation, visited based on action
if stench then TELL(KB, S_{x,y}) else TELL(KB, \neg S_{x,y})
if breeze then TELL(KB, B_{x,y}) else TELL(KB, \neg B_{x,y})
if glitter then action ← grab
else if plan is nonempty then action ← POP(plan)
else if for some fringe square [i,j], \text{ASK}(KB, (\neg P_{i,j} \land \neg W_{i,j})) is true or
 for some fringe square [i,j], \text{ASK}(KB, (P_{i,j} \lor W_{i,j})) is false then do
 plan ← A*-GRAPH-SEARCH(ROUTE-PB([x,y], orientation, [i,j], visited))
 action ← POP(plan)
else action ← a randomly chosen move
return action
Expressiveness limitation of propositional logic

- KB contains "physics" sentences for every single square

- Rapid proliferation of clauses
Forward and backward chaining

- **Horn Clause** (restricted)
 - Horn clause:
 - proposition symbol
 - (conjunction of symbols) \Rightarrow symbol
 - E.g.: $A \land B \Rightarrow A \land C \land D \Rightarrow B$

- **KB = conjunction of Horn clauses**
 - E.g., $C \land (B \Rightarrow A) \land (C \land D \Rightarrow B)$

- **Modus Ponens** (for Horn Form): complete for Horn KBs
 \[
 \alpha_1, \ldots, \alpha_n, \alpha_1 \land \ldots \land \alpha_n \Rightarrow \beta
 \]
 \[
 \beta
 \]

- Used with *forward chaining* or *backward chaining*.
- These algorithms are very natural and run in linear time
Forward chaining

- Idea: Apply modus ponens to any Horn Clause whose premises are satisfied in the KB
 - Add its conclusion to the KB, until query is found
 - Easy to visualize informally in graphical form:

$$P \Rightarrow Q$$
$$L \land M \Rightarrow P$$
$$B \land L \Rightarrow M$$
$$A \land P \Rightarrow L$$
$$A \land B \Rightarrow L$$
$$A$$
$$B$$

Q

P

A

B

M

L

CSE 391-Intro to AI
Forward chaining algorithm

```
function PL-FC-ENTAILS?(KB, q) returns true or false

   local variables: count, a table, indexed by clause, initially the number of premises
                     inferred, a table, indexed by symbol, each entry initially false
                     agenda, a list of symbols, initially the symbols known to be true

   while agenda is not empty do
      p ← POP(agenda)
      unless inferred[p] do
         inferred[p] ← true
         for each Horn clause c in whose premise p appears do
            decrement count[c]
            if count[c] = 0 then do
               if HEAD[c] = q then return true
               PUSH(HEAD[c], agenda)
         end for
      end unless
      return false
```
Forward chaining example
Proof of completeness

FC derives every atomic sentence that is entailed by KB

1. FC reaches a fixed point where no new atomic sentences are derived
2. Consider the final state as a model m, assigning true/false to symbols
3. Every clause in the original KB is true in m
 $$a_1 \land \ldots \land a_k \Rightarrow b$$
4. Hence m is a model of KB
5. If $KB \models q$, q is true in every model of KB, including m
Backward chaining

Idea: work backwards from the query q:

- to prove q by BC,
 - check if q is known already, or
 - prove by BC all premises of some rule concluding q

Avoid loops: check if new subgoal is already on the goal stack

Avoid repeated work: check if new subgoal

1. has already been proved true, or
2. has already failed
Backward chaining example
Forward vs. backward chaining

- FC is *data-driven*, automatic, unconscious processing,
 - e.g., object recognition, routine decisions
- May do lots of work that is irrelevant to the goal
- BC is *goal-driven*, appropriate for problem-solving,
 - e.g., Where are my keys? How do I get into a PhD program?
- Complexity of BC can be *much less* than linear in size of KB