Logical Agents

(AIMA - Chapter 7)

Outline

1. Wumpus world
2. Logic-based agents
3. Propositional logic
 • Syntax, semantics, inference, validity, equivalence and satifiability

Next Time:
• Automated Propositional Theorem Provers
 • Resolution
 • A Practical Method: Walksat

1. Automating “Hunt the Wumpus”: A different kind of problem

The Wumpus World

PEAS description
• Performance measure
 • gold: +1000, death: -1000
 • -1 per step
• Environment
 • Squares adjacent to wumpus are smelly
 • Squares adjacent to pit are breezy
 • Glitter if gold is in the same square
 • Gold is picked up by reflex, can’t be dropped
 • You bump if you walk into a wall
• Actuators: Move <dir>
• Sensors: Stench, Breeze, Glitter, Bump

Full PEAS description
• Performance measure
 • gold: +1000, death: -1000
 • -1 per step, -10 for using the arrow
• Environment
 • Squares adjacent to wumpus are smelly
 • Squares adjacent to pit are breezy
 • Glitter if gold is in the same square
 • Shooting kills wumpus if you are facing it. It screams
 • Shooting uses up the only arrow
 • Grabbing picks up gold if in same square
 • Releasing drops the gold in same square
 • You bump if you walk into a wall
• Actuators: Face <direction>, Move, Grab, Release, Shoot
• Sensors: Stench, Breeze, Glitter, Bump, Scream

A Hunt the Wumpus Flash version: http://www.flashrolls.com/puzzle-games/Hunt-The-Wumpus-Flash-Game.htm
Wumpus World Characterization

- **Deterministic**: Yes – outcomes exactly specified
- **Static**: Yes – Wumpus and Pits do not move
- **Discrete**: Yes
- **Single-agent**: Yes – Wumpus is essentially a natural feature
- **Fully Observable**: No – only local perception
- **Episodic**: No – What was observed before (breezes, pits, etc) is very useful.

Exploring the Wumpus World

1. The KB initially contains the rules of the environment.

2. **Location**: [1,1]
 - **Percept**: \([-\text{Stench}, \text{Breeze}, \text{Glitter}, \text{Bump}]\)
 - **Action**: Move to safe cell e.g. 2,1

3. **Location**: [2,1]
 - **Percept**: \([-\text{Stench}, \text{Breeze}, \text{Glitter}, \text{Bump}]\)
 - **INFER**: Breeze indicates that there is a pit in [2,2] or [2,3]
 - **Action**: Return to [1,1] to try next safe cell

Exploring the Wumpus World

4. **Location**: [1,2] (after going through [1,1])
 - **Percept**: \([\text{Stench}, \neg\text{Breeze}, \neg\text{Glitter}, \neg\text{Bump}]\)
 - **INFER**: Wumpus is in [1,1] or [2,2] or [1,3]
 - **INFER**: stench not detected in [2,1], thus not in [2,2]
 - **REMEMBER**: Wumpus not in [1,1]
 - **THUS**: Wumpus is in [1,3]
 - **THEREFORE**: [2,2] is safe because of lack of breeze in [1,2]
 - **Action**: Move to [2,2]
 - **REMEMBER**: Pit in [2,2] or [3,1]
 - **THEREFORE**: Pit in [3,1]!

Logical Agents

- Most useful in non-episodic, partially observable environments
- **Logic (Knowledge-Based) agents** combine
 1. A knowledge base (KB): a list of facts that are known to the agent.
 2. Current percepts to infer hidden aspects of the current state using rules of inference
- **Logic** provides a good formal language for both
 - Facts encoded as axioms
 - Rules of inference

The Knowledge Base

A set of sentences that encode assertions about the world in a formal knowledge representation language.

- **Inference engine**
- **Knowledge base**

Declarative approach to building an agent:
- **Tell** it what it needs to know – add fact to KB.
- **Ask** it what to do – compute using inference rules also in KB.
Generic KB-Based Agent Pseudocode

function KB-AGENT(percept) returns an action
 static: KB, a knowledge base
 l, a counter, initially 0, indicating time
 Tell(KB, Make-Percept-Sentence(percept, l))
 actions ← Add(KB, Make-Action-Question(l))
 tell KB, Make-Action-Sentence(action, l)
 l = l + 1
 return action

- Agent must be able to:
 1. Represent states and actions,
 2. Incorporate new percepts
 3. Update internal representation of the world
 4. Deduce hidden properties of the world
 5. Deduce appropriate actions — requires some logic of action

3. Propositional Logic

- Propositional logic is the simplest logic — illustrates basic ideas
- Inference in propositional logic is also tractable with reasonable constraints — therefore very useful

LOGIC: What is a logic?

- A formal language with associated
 - Syntax — what expressions are legal (well-formed)
 - Semantics — what legal expressions mean

- e.g. the language of arithmetic
 - Syntax: \(x + 2 \geq y\) is a legal sentence,
 - Semantics: \(x + 2 \geq y\) is true in a world where \(x = 7\) and \(y = 1\)

Propositional logic: Syntax

Recursively defined:

Base case:
- The atomic proposition symbols \(P_1, P_2\) etc are sentences

Recursion:
- If \(S\) is a sentence, \(\neg S\) is a sentence (negation)
- If \(S_1\) and \(S_2\) are sentences, \(S_1 \land S_2\) is a sentence (conjunction)
- If \(S_1\) and \(S_2\) are sentences, \(S_1 \lor S_2\) is a sentence (disjunction)
- If \(S_1\) and \(S_2\) are sentences, \(S_1 \Rightarrow S_2\) is a sentence (implication)
- If \(S_1\) and \(S_2\) are sentences, \(S_1 \Leftrightarrow S_2\) is a sentence (biconditional)

Propositional logic: Semantics

Each model/world specifies true or false for each proposition symbol

E.g. \(P_{true}, P_{false}\)

With these three symbols, \(2^3\) possible models (worlds), can be enumerated automatically.

Rules for evaluating truth with respect to a model \(m\):

\[(not) \quad \neg S\] is true iff \(S\) is false
\[(and) \quad S_1 \land S_2\] is true iff \(S_1\) is true and \(S_2\) is true
\[(or) \quad S_1 \lor S_2\] is true iff \(S_1\) is true or \(S_2\) is true
\[(if..then) \quad S_1 \Rightarrow S_2\] is true iff \(S_1\) is false or \(S_2\) is true
\[(if and only if) \quad S_1 \Leftrightarrow S_2\] is true iff \(S_1\) is true and \(S_2\) is false or \(S_1\) is false and \(S_2\) is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

\[\neg (P_{1} \lor (P_{2} \land P_{3})) = true \land (true \lor false) = true \land true = true\]

Wumpus world sentences

Let \(p_i\) be true if there is a pit in \([i, j]\).
Let \(b_i\) be true if there is a breeze in \([i, j]\).

\[\text{start: } \neg p_{1,1} \quad \neg b_{1,1}\]

"Pits cause breezes in adjacent squares"

\[b_{1,2} \equiv (p_{1,2} \lor p_{2,1})\]
\[b_{2,1} \equiv (p_{1,1} \lor p_{2,2} \lor p_{3,1})\]
Model Theory

- Logicians often think in terms of models
- Formally structured “worlds” with respect to which truth can be evaluated
- We say \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \)
- \(M(\alpha) \) is the set of all models of \(\alpha \)

(Usually, logicians are interested in models of mathematical structures. AI-types are interested in models of common-sense objects and activities.)

A key semantic relation: Entailment

- Entailment means that the truth of one sentence follows from the truth of another:

\[
\text{KB } \models \alpha \quad \text{Entails}
\]

Knowledge base \(\text{KB} \) entails sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where \(\text{KB} \) is true

- e.g., the KB containing the Giants won and the Reds lost entails The Giants won
- e.g., the KB containing \(x+y = 4 \) entails \(4 = x+y \)

- Entailment is a relationship between sentences based on semantics

Models II

- Review:
 - \(m \) is a model of a sentence \(\alpha \) if \(\alpha \) is true in \(m \)
 - \(M(\alpha) \) is the set of all models of \(\alpha \)
- Entailment:
 - \(\text{KB } \models \alpha \) iff \(M(\text{KB}) \subseteq M(\alpha) \)
- Example:
 - \(\text{KB} = \text{Giants won and Reds lost} \)
 - \(\alpha = \text{Giants won} \)

Entailment in the wumpus world

- Consider possible models for \(\text{KB} \) assuming only pits and a reduced Wumpus world with only 5 squares and pits
- Situation after
 A. detecting nothing in [1,1],
 B. moving right, breeze in [2,1]:

\[
\begin{array}{c|c|c|c|c}
\text{Pit} & \text{Shadows} & \text{Hot} & \text{Smell} & \text{Breeze} \\
\hline
\text{?} & \text{?} & \text{?} & \text{?} & \text{?} \\
\end{array}
\]

Wumpus models I

All possible models (exactly 8) in this reduced Wumpus world.

Wumpus models II

- In Red: all possible wumpus-worlds consistent with the observations on slide 22 and the “physics” of the Wumpus world.
Deciding what to do by model checking I

\[\alpha_1 = \{1, 2\} \text{ is safe}, \ KB \models \alpha_1, \text{ proved by model checking} \]

Deciding what to do by model checking II

\[\alpha_2 = \{2, 2\} \text{ is safe}, \ KB \not\models \alpha_2 \]

Truth tables for connectives

- Truth tables enumerate all possible propositional models
- Thus, truth tables are a simple form of model checking

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>\neg P</th>
<th>P \land Q</th>
<th>P \lor Q</th>
<th>P \rightarrow Q</th>
<th>P \leftrightarrow Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>false, false</td>
<td>true, true</td>
<td>false, false</td>
<td>false, false</td>
<td>true, true</td>
<td>true, false</td>
<td>false, true</td>
</tr>
<tr>
<td>false, true</td>
<td>true, false</td>
<td>false, true</td>
<td>false, true</td>
<td>true, true</td>
<td>false, true</td>
<td>false, true</td>
</tr>
<tr>
<td>true, false</td>
<td>false, true</td>
<td>true, true</td>
<td>false, true</td>
<td>false, false</td>
<td>false, true</td>
<td>false, true</td>
</tr>
</tbody>
</table>

OR: P or Q is true or both are true.
XOR: P or Q is true but not both.
Implication is always true when the premises are False!

Inference Procedures

- \(KB \models \alpha \): sentence \(\alpha \) can be derived from \(KB \) by procedure \(i \)
- **Soundness**: \(i \) is sound if whenever \(KB \models \alpha \), it is also true that \(KB \models \alpha \)
 - No false inferences
 - (but all true statements might not be derived)
- **Completeness**: \(i \) is complete if whenever \(KB \models \alpha \), it is also true that \(KB \models \alpha \)
 - All true sentences can be derived,
 - (but some false statements might be derived)
- Desirable: sound and complete

Inference by enumeration

- Enumeration of all models (truth tables) is sound and complete.
- For \(n \) symbols, time complexity is \(O(2^n) \)...
- We need a smarter way to do inference!
- One approach: infer new logical sentences from the data-base and see if they match a query.

Logical equivalence

- To manipulate logical sentences we need some rewrite rules.
- Two sentences are logically equivalent iff they are true in same models: \(\alpha \equiv \beta \) iff \(\alpha \models \beta \) and \(\beta \models \alpha \)

You need to know these!
Validity and satisfiability

A sentence is **valid** if it is true in all models.
- e.g. $\text{True, } A \lor \neg A, A \Rightarrow A, (A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:
$KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ is valid

A sentence is **satisfiable** if it is true in some model
- e.g. $A \lor B, C$

A sentence is **unsatisfiable** if it is false in all models
- e.g. $A \land \neg A$

Satisfiability is connected to inference via the following:
$KB \models \alpha$ if and only if $(KB \land \neg \alpha)$ is unsatisfiable
(there is no model for which KB true and α is false)