Logical Agents

(AIMA - Chapter 7)

Outline

1. Knowledge-based agents
2. Wumpus world
3. An introduction to logic
 • Inference, validity, equivalence and satisfiability
4. Propositional logic

Next Time:
• Automated Propositional Theorem Provers
 • Resolution
 • A Practical Method: Walksat

1. Knowledge-based Agents

Logical Agents

• Logic (Knowledge-Based) agents combine
 1. A knowledge base (KB): a list of facts that are known to the agent.
 2. Current percepts to infer hidden aspects of the current state using Rules of inference

Most useful in non-episodic, partially observable environments

Logic provides a good formal language for both
• Facts encoded as axioms
• Rules of inference

The Knowledge Base

A set of sentences
• in a formal knowledge representation language
• that encodes assertions about the world.

Declarative approach to building an agent:
• Tell it what it needs to know.
• Ask it what to do
 • answers should follow by inference rules from the KB.

Generic KB-Based Agent Pseudocode

```plaintext
function KB-Agent(percept) returns an action
    static: KB, a knowledge base
    t, a counter, initially 0, indicating time
    actions = Ans(KB, MAKE-ACTION-QUERY(t))
    if actions ≠ nil
        take action in actions
        return action

Agent must be able to:
1. Represent states and actions,
2. Incorporate new percepts
3. Update internal representation of the world
4. Deduce hidden properties of the world
5. Deduce appropriate actions – requires some logic of action
```
Running Example: The Wumpus World

PEAS description

- **Performance measure**
 - gold: +1000, death: -1000
 - -1 per step, -10 for using the arrow
- **Environment**
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it. It screams
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
 - You bump if you walk into a wall
- **Actuators**: Face <direction>, Move <dir>, Grab, Release, Shoot
- **Sensors**: Stench, Breeze, Glitter, Bump

Our PEAS description

- **Performance measure**
 - gold: +1000, death: -1000
 - -1 per step
- **Environment**
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pit are breezy
 - Glitter iff gold is in the same square
 - Gold is picked up by reflex, can’t be dropped
 - You bump if you walk into a wall
- **Actuators**: Face <direction>, Move <dir>
- **Sensors**: Stench, Breeze, Glitter, Bump, Bump

Wumpus world characterization

- **Deterministic** Yes – outcomes exactly specified
- **Static** Yes – Wumpus and Pits do not move
- **Discrete** Yes
- **Single-agent** Yes – Wumpus is essentially a natural feature
- **Fully Observable** No – only local perception
- **Episodic** No—What was observed before (breezes, pits, etc) is very useful.

Exploring the Wumpus World

1. The KB initially contains the rules of the environment.
2. Location: [1,1]
 - Percept: ~Stench, ~Breeze, ~Glitter, ~Bump
 - Action: Move to safe cell e.g. 2,1
3. Location: [2,1]
 - Percept: ~Stench, ~Breeze, ~Glitter, ~Bump
 - Infer: Breeze indicates that there is a pit in [2,2] or [3,1]
 - Action: Return to [1,1] to try next safe cell
4. Location: [1,2]
 - Percept: Stench, ~Breeze, ~Glitter, ~Bump
 - Infer: Wumpus is in [1,1] or [2,2] or [1,3]
 - Infer ... stench not detected in [2,1], thus not in [2,2]
 - Remember ... Wumpus not in [1,1]
 - Thus ... Wumpus is in [1,3]
 - Therefore [2,2] is safe because of lack of breeze in [1,2]
 - Action: Move to [2,2]
 - Remember: Pit in [2,2] or [3,1]
 - Therefore ... Pit in [3,1]?
3. Logic

4. Propositional Logic

Propositional logic is the simplest logic – illustrates basic ideas
Inference in propositional logic is also tractable with reasonable constraints – therefore very useful

Propositional logic: Syntax

Recursively defined:

Base case:
- The atomic proposition symbols P_1, P_2 etc are sentences

Recursion:
- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Each model/world specifies true or false for each proposition symbol
E.g. P_2: false, P_1: true, P_3: false

With these symbols, 8 possible models (worlds) can be enumerated automatically.

Rules for evaluating truth with respect to a model m:

-not
- $\neg S$ is true iff S is false

-and
- $S_1 \land S_2$ is true iff S_1 is true and S_2 is true

-or
- $S_1 \lor S_2$ is true iff S_1 is true or S_2 is true

-if-then
- $S_1 \Rightarrow S_2$ is true iff S_1 is false or S_2 is true (i.e., is false iff S_1 is true and S_2 is false

-if-and-only-if
- $S_1 \Leftrightarrow S_2$ is true iff $S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

$\neg(P_2 \land (P_1 \lor P_3)) = true \land (true \lor false) = true \land true = true$

Wumpus world sentences

Let P_i be true if there is a pit in [i, j]. Let B_i be true if there is a breeze in [i, j].

-start:

\[\neg P_{1,1} \]

\[\neg B_{1,1} \]

"Pits cause breezes in adjacent squares":

\[B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}) \]

\[B_{1,2} \Leftrightarrow (P_{1,3} \lor P_{2,2} \lor P_{3,1}) \]
Models

- Logicians typically think in terms of models
 - Formally structured “worlds” with respect to which truth can be evaluated
- We say m is a model of a sentence α if α is true in m
- $M(\alpha)$ is the set of all models of α

A key semantic relation: Entailment

- Entailment means that the truth of one sentence follows from the truth of another:
 \[KB \models \alpha \]
 Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
 - e.g., the KB containing the Giants won and the Reds lost entails The Giants won
 - e.g., the KB containing $x + y = 4$ entails $4 = x + y$
- Entailment is a relationship between sentences based on semantics

Models II

- Review:
 - m is a model of a sentence α if α is true in m
 - $M(\alpha)$ is the set of all models of α
- Entailment:
 - $KB \models \alpha$ iff $M(KB) \subseteq M(\alpha)$
 - Example:
 \[KB = \text{Giants won and Reds lost} \]
 \[\alpha = \text{Giants won} \]

Entailment in the Wumpus world

- Consider possible models for KB assuming only pits and a reduced Wumpus world with 5 squares, pits only
- Situation after
 A. detecting nothing in [1,1],
 B. moving right, breeze in [2,1]:

Wumpus models I

All possible models (exactly 8) in this reduced Wumpus world.

Wumpus models II

- In Red: all possible Wumpus-worlds consistent with the observations and the “physics” of the Wumpus world.
Deciding what to do by model checking I

\(\alpha_1 = \text{"[1,2] is safe"}, \ KB \models \alpha_1 \), proved by model checking

Deciding what to do by model checking II

\(\alpha_2 = \text{"[2,2] is safe"}, \ KB \not\models \alpha_2 \)

Truth tables for connectives

- Truth tables enumerate all possible propositional models
- Thus, truth tables are a simple form of model checking

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(\neg P)</th>
<th>(P \land Q)</th>
<th>(P \lor Q)</th>
<th>(P \rightarrow Q)</th>
<th>(P \leftrightarrow Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

OR: \(P \lor Q \) is true or both are true.
XOR: \(P \lor Q \) is true but not both.

Implication is always true when the premises are False!

Inference Procedures

- \(KB \models \alpha \) : sentence \(\alpha \) can be derived from \(KB \) by procedure \(i \)
- **Soundness**: \(i \) is sound if whenever \(KB \models \alpha \), it is also true that \(KB \models \alpha \)
 - No false inferences
 - (but all true statements might not be derived)
- **Completeness**: \(i \) is complete if whenever \(KB \models \alpha \), it is also true that \(KB \models \alpha \)
 - All true sentences can be derived,
 - (but some false statements might be derived)
- **Desirable**: sound and complete

Inference by enumeration

- Enumeration of all models (truth tables) is sound and complete.

 - For \(n \) symbols, time complexity is \(O(2^n) \)...

 - We need a smarter way to do inference!

 - One approach: infer new logical sentences from the data-base and see if they match a query.

Logical equivalence

- To manipulate logical sentences we need some rewrite rules.
- Two sentences are logically equivalent iff they are true in same models: \(\alpha \Leftrightarrow \beta \)

\[
\begin{align*}
\alpha \land \beta & \equiv (\beta \land \alpha) & \text{commutativity of } \land \\
\alpha \lor \beta & \equiv (\beta \lor \alpha) & \text{commutativity of } \lor \\
(\alpha \land (\beta \land \gamma)) & \equiv (\alpha \land (\beta \land \gamma)) & \text{associativity of } \land \\
(\alpha \lor (\beta \lor \gamma)) & \equiv (\alpha \lor (\beta \lor \gamma)) & \text{associativity of } \lor \\
(\neg \alpha) & \equiv \alpha & \text{double negation elimination} \\
(\alpha \land \beta) & \equiv (\neg \beta \land \alpha) & \text{contraposition} \\
(\alpha \lor \beta) & \equiv (\neg \beta \lor \alpha) & \text{implication elimination} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \land (\beta \lor \gamma)) & \text{biconditional elimination} \\
(\neg (\alpha
\land (\beta \lor \gamma))) & \equiv (\neg (\alpha \land \beta) \land (\beta \lor \gamma)) & \text{Morgan} \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) & \text{commutativity of } \lor \text{ over } \land \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) & \text{associativity of } \lor \text{ over } \land \\
\end{align*}
\]

You need to know these!
Validity and satisfiability

A sentence is **valid** if it is true in all models,

- e.g. \(\text{True}, \ A \lor \neg A, \ A \Rightarrow A, \ (A \land (A \Rightarrow B)) \Rightarrow B\)

Validity is connected to inference via the **Deduction Theorem**:

\(KB \models \alpha \) if and only if \((KB \models \alpha)\) is valid

A sentence is **satisfiable** if it is true in some model

- e.g. \(A \lor B, \ C\)

A sentence is **unsatisfiable** if it is false in all models

- e.g. \(A \land \neg A\)

Satisfiability is connected to inference via the following:

- \(KB \not\models \alpha \) if and only if \((KB \land \neg \alpha)\) is unsatisfiable

(there is no model for which KB=true and \(\alpha\) is false)