Logical Agents

(AIMA - Chapter 7)
Outline

1. Knowledge-based agents
2. Wumpus world
3. An introduction to logic
 • Inference, validity, equivalence and satisfiability
4. Propositional logic

Next Time:
• Automated Propositional Theorem Provers
 • Resolution
 • A Practical Method: Walksat
1. Knowledge-based Agents
Logical Agents

- **Logic (Knowledge-Based) agents** combine
 1. A *knowledge base (KB)*: a list of facts that are known to the agent.
 2. **Current percepts** to *infer hidden* aspects of the current state using *Rules of inference*

- Most useful in *non-episodic, partially observable* environments

- **Logic** provides a good formal language for both
 - Facts encoded as *axioms*
 - Rules of inference
The Knowledge Base

A set of *sentences*
- in a formal *knowledge representation language*
- that *encodes assertions* about the world.

Declarative approach to building an agent:
- **Tell** it what it needs to know.
- **Ask** it what to do
 - answers should follow by *inference rules* from the KB.
Generic KB-Based Agent Pseudocode

```plaintext
function KB-AGENT( percept ) returns an action
  static: KB, a knowledge base
  t, a counter, initially 0, indicating time
  TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t ))
  action ← ASK(KB, MAKE-ACTION-QUERY(t ))
  TELL(KB, MAKE-ACTION-SENTENCE( action, t ))
  t ← t + 1
  return action
```

- Agent must be able to:
 1. Represent states and actions,
 2. Incorporate new percepts
 3. Update internal representation of the world
 4. Deduce hidden properties of the world
 5. Deduce appropriate actions – requires some logic of action
Running Example: The Wumpus World

PEAS description

- **Performance measure**
 - gold: +1000, death: -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - Squares adjacent to wumpus are *smelly*
 - Squares adjacent to pit are *breezy*
 - *Glitter* iff gold is in the same square
 - Shooting kills wumpus if you are facing it. It *screams*
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
 - You *bump* if you walk into a wall

- **Actuators:** Face <direction>, Move <dir>, Grab, Release, Shoot
- **Sensors:** Stench, Breeze, Glitter, Bump, Scream
Our PEAS description

- **Performance measure**
 - gold: +1000, death: -1000
 - -1 per step

- **Environment**
 - Squares adjacent to wumpus are *smelly*
 - Squares adjacent to pit are *breezy*
 - *Glitter* iff gold is in the same square
 - Gold is picked up by reflex, can’t be dropped
 - You *bump* if you walk into a wall

- **Actuators:** Face <direction>, Move <dir>
- **Sensors:** Stench, Breeze, Glitter, Bump
Wumpus world characterization

- **Deterministic** Yes – outcomes exactly specified
- **Static** Yes – Wumpus and Pits do not move
- **Discrete** Yes
- **Single-agent** Yes – Wumpus is essentially a natural feature

- **Fully Observable** No – only *local* perception
- **Episodic** No—What was observed before (breezes, pits, etc) is very useful.
Exploring the Wumpus World

1. The KB initially contains the rules of the environment.

2. **Location:** [1,1]
 Percept: [¬Stench, ¬Breeze, ¬Glitter, ¬Bump]
 Action: Move to safe cell e.g. 2,1

3. **Location:** [2,1]
 Percept: [¬Stench, Breeze, ¬Glitter, ¬Bump]
 Infer: Breeze indicates that there is a pit in [2,2] or [3,1]
 Action: Return to [1,1] to try next safe cell
Exploring the Wumpus World

<table>
<thead>
<tr>
<th></th>
<th>1,4</th>
<th>2,4</th>
<th>3,4</th>
<th>4,4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3</td>
<td>W!</td>
<td>2,3</td>
<td>3,3</td>
<td>4,3</td>
</tr>
<tr>
<td>1,2</td>
<td>A</td>
<td>2,2</td>
<td>3,2</td>
<td>4,2</td>
</tr>
<tr>
<td>1,1</td>
<td>V</td>
<td>2,1</td>
<td>3,1</td>
<td>V!</td>
</tr>
<tr>
<td></td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
<td>OK</td>
</tr>
</tbody>
</table>

4. **Location:** [1,2]

Percept: \[\text{Stench}, \neg\text{Breeze}, \neg\text{Glitter}, \neg\text{Bump}\]

Infer: Wumpus is in [1,1] or [2,2] or [1,3]

- **Infer** ... stench not detected in [2,1], **thus** not in [2,2]

- **Remember**...Wumpus not in [1,1]

- **Thus** ... Wumpus is in [1,3]

- **Therefore** [2,2] is safe because of lack of breeze in [1,2]

Action: Move to [2,2]

Remember: Pit in [2,2] or [3,1]

Therefore: Pit in [3,1]!
3. Logic
What is a logic?

• A formal language with associated
 • Syntax – what expressions are legal (well-formed)
 • Semantics – what legal expressions mean
 — in logic, meaning is defined by the truth of each sentence with respect to a set of possible worlds
 — Possible world (simplified): an assignment of values to all logical variables

• e.g. the language of arithmetic
 • Syntax: \(X+2 \geq y \) is a legal sentence, \(x^2+y \) is not a legal sentence
 • Semantics: \(X+2 \geq y \) is true in a world where \(x=7 \) and \(y =1 \)
 • Semantics: \(X+2 \geq y \) is false in a world where \(x=0 \) and \(y =6 \)
4. Propositional Logic

- Propositional logic is the simplest logic – illustrates basic ideas
- Inference in propositional logic is also *tractable* with reasonable constraints – therefore very useful
Propositional logic: Syntax

Recursively defined:

Base case:
- The atomic proposition symbols P_1, P_2 etc are sentences

Recursion:
- If S is a sentence, $\neg S$ is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)
Propositional logic: *Semantics*

Each model/world specifies true or false for each proposition symbol

E.g. \(P_{1,2}, P_{2,2}, P_{3,1} \)

\[
\begin{array}{ccc}
\text{false} & \text{true} & \text{false} \\
\end{array}
\]

With these symbols, 8 possible models (worlds), can be enumerated automatically.

Rules for evaluating truth with respect to a model \(m \):

- (not) \(\neg S \) is true iff \(S \) is false
- (and) \(S_1 \land S_2 \) is true iff \(S_1 \) is true and \(S_2 \) is true
- (or) \(S_1 \lor S_2 \) is true iff \(S_1 \) is true or \(S_2 \) is true
- (if..then) \(S_1 \Rightarrow S_2 \) is true iff \(S_1 \) is false or \(S_2 \) is true
 i.e., is false iff \(S_1 \) is true and \(S_2 \) is false
- (if and only if) \(S_1 \iff S_2 \) is true iff \(S_1 \Rightarrow S_2 \) is true and \(S_2 \Rightarrow S_1 \) is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

\[
\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = \text{true} \land (\text{true} \lor \text{false}) = \text{true} \land \text{true} = \text{true}
\]
Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in $[i, j]$.
Let $B_{i,j}$ be true if there is a breeze in $[i, j]$.

\[
\text{start:} \quad \neg P_{1,1} \\
\quad \neg B_{1,1} \\
\quad B_{2,1}
\]

"Pits cause breezes in adjacent squares"

\[
B_{1,1} \iff (P_{1,2} \lor P_{2,1}) \\
B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})
\]
Models

- Logicians typically think in terms of *models*
 - Formally structured “*worlds*” with respect to which truth can be evaluated

- We say *m is a model of* a sentence *α* if *α* is true in *m*

- *M(α)* is the set of *all* models of *α*
A key semantic relation: *Entailment*

- **Entailment** means that the *truth* of one sentence follows from the *truth of* another:
 \[\text{KB} \models \alpha \]

 Knowledge base *KB* **entails** sentence \(\alpha \) if and only if \(\alpha \) is true in all worlds where *KB* is true

 - e.g., the KB containing *the Giants won and the Reds lost* entails *The Giants won*
 - e.g., the KB containing \(x+y = 4 \) entails \(4 = x+y \)

- **Entailment is a relationship between sentences based on semantics**
Models II

- **Review:**
 - m is a model of a sentence α if α is true in m
 - M(α) is the set of all models of α

- **Entailment:**
 - KB ⊨ α iff M(KB) ⊆ M(α)
 - **Example:**
 - KB = Giants won and Reds lost
 - α = Giants won
Entailment in the wumpus world

- Consider possible models for KB assuming only pits and a reduced Wumpus world with 5 squares, pits only

- Situation after
 A. detecting nothing in [1,1],
 B. moving right, breeze in [2,1]:

```
  ? ?
  A B A
  ?
```
Wumpus models I

All possible models (exactly 8) in this reduced Wumpus world.
Wumpus models II

- In Red: all possible wumpus-worlds consistent with the observations and the “physics” of the Wumpus world.
Deciding what to do by model checking I

\[\alpha_1 = \text{"[1,2] is safe"}, \ KB \models \alpha_1, \text{proved by model checking} \]
Deciding what to do by *model checking II*

\[\alpha_2 = "[2,2] is safe", \ KB \not\models \alpha_2 \]
Truth tables for connectives

- Truth tables enumerate all possible propositional models
- Thus, truth tables are a simple form of model checking

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>¬P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P ⇒ Q</th>
<th>P ⇔ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

OR: P or Q is true or both are true.
XOR: P or Q is true but not both.

Implication is always true when the premises are False!
Inference Procedures

- $KB \vdash^i \alpha$: sentence α can be derived from KB by procedure i

- **Soundness**: i is sound if whenever $KB \vdash^i \alpha$, it is also true that $KB \models \alpha$
 - No false inferences
 - (but all true statements might not be derived)

- **Completeness**: i is complete if whenever $KB \models \alpha$, it is also true that $KB \vdash^i \alpha$
 - All true sentences can be derived,
 - (but some false statements might be derived)

- **Desirable**: sound and complete
Inference by enumeration

- Enumeration of all models (truth tables) is sound and complete.
- For n symbols, time complexity is $O(2^n)$...
- We need a smarter way to do inference!
- One approach: infer new logical sentences from the data-base and see if they match a query.
Logical equivalence

- To manipulate logical sentences we need some rewrite rules.
- Two sentences are **logically equivalent** iff they are true in the same models: \(\alpha \equiv \beta \) iff \(\alpha \models \beta \) and \(\beta \models \alpha \)

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
(\alpha \land (\beta \land \gamma)) & \equiv ((\alpha \land \beta) \land \gamma) \quad \text{associativity of } \land \\
(\alpha \lor (\beta \lor \gamma)) & \equiv ((\alpha \lor \beta) \lor \gamma) \quad \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \leftrightarrow \beta) & \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) \quad \text{de Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor \alpha \land \gamma) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity and satisfiability

A sentence is *valid* if it is true in *all* models,
e.g. *True, A ∨¬A, A ⇒ A, (A ∧ (A ⇒ B)) ⇒ B*

Validity is connected to inference via the Deduction Theorem:

\[KB ⊢ α \text{ if and only if } (KB ⇒ α) \text{ is valid} \]

A sentence is *satisfiable* if it is true in *some* model

e.g. *A ∨ B, C*

A sentence is *unsatisfiable* if it is false in *all* models

e.g. *A ∧¬A*

Satisfiability is connected to inference via the following:
\[KB ⊬ α \text{ if and only if } (KB ∧¬α) \text{ is unsatisfiable} \]
(there is no model for which KB=true and \(α \) is false)