Logical Agents

(AIMA - Chapter 7)
Outline

1. Wumpus world
2. Logic-based agents
3. Propositional logic
 • Syntax, semantics, inference, validity, equivalence and satisfiability

Next Time:
• **Automated Propositional Theorem Provers**
 • Resolution
 • A Practical Method: Walksat
1. Automating “Hunt the Wumpus”: A different kind of problem
The Wumpus World

A Hunt the Wumpus Flash version: http://www.flashrolls.com/puzzle-games/Hunt-The-Wumpus-Flash-Game.htm
PEAS description

Performance measure
- gold: +1000, death: -1000
- -1 per step

Environment
- Squares adjacent to wumpus are *smelly*
- Squares adjacent to pit are *breezy*
- *Glitter* iff gold is in the same square
- Gold is picked up by reflex, can’t be dropped
- You *bump* if you walk into a wall

Actuators: Move <dir>
Sensors: Stench, Breeze, Glitter, Bump
Full **PEAS** description

- **Performance measure**
 - gold: +1000, death: -1000
 - -1 per step, -10 for using the arrow

- **Environment**
 - Squares adjacent to wumpus are *smelly*
 - Squares adjacent to pit are *breezy*
 - *Glitter* iff gold is in the same square
 - Shooting kills wumpus if you are facing it. It *screams*
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
 - You *bump* if you walk into a wall

- **Actuators:** Face <direction>, Move, Grab, Release, Shoot
- **Sensors:** Stench, Breeze, Glitter, Bump, Scream
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>Yes – outcomes exactly specified</td>
</tr>
<tr>
<td>Static</td>
<td>Yes – Wumpus and Pits do not move</td>
</tr>
<tr>
<td>Discrete</td>
<td>Yes</td>
</tr>
<tr>
<td>Single-agent</td>
<td>Yes – Wumpus is essentially a natural feature</td>
</tr>
<tr>
<td>Fully Observable</td>
<td>No – only local perception</td>
</tr>
<tr>
<td>Episodic</td>
<td>No—What was observed before (breezes, pits, etc) is very useful.</td>
</tr>
</tbody>
</table>

A New Kind of Problem!
Exploring the Wumpus World

1. The KB initially contains the rules of the environment.

2. **Location:** [1,1]
 Percept: \([-\text{Stench}, -\text{Breeze}, -\text{Glitter}, -\text{Bump}]\)
 Action: Move to safe cell e.g. 2,1

3. **Location:** [2,1]
 Percept: \([-\text{Stench}, \text{Breeze}, -\text{Glitter}, -\text{Bump}]\)
 INFER: Breeze indicates that there is a pit in [2,2] or [3,1]
 Action: Return to [1,1] to try next safe cell
Exploring the Wumpus World

4. **Location:** [1,2] (after going through [1,1])

Percept: \([\text{Stench}, \neg \text{Breeze}, \neg \text{Glitter}, \neg \text{Bump}]\)

INFER: Wumpus is in [1,1] or [2,2] or [1,3]

INFER … stench not detected in [2,1], **thus** not in [2,2]

REMEMBER….Wumpus not in [1,1]

THUS … Wumpus is in [1,3]

THEREFORE [2,2] is safe because of lack of breeze in [1,2]

Action: Move to [2,2]

REMEMBER: Pit in [2,2] or [3,1]

THEREFORE: Pit in [3,1]!
2. Logic-based Agents
Logical Agents

- Most useful in *non-episodic, partially observable* environments

- **Logic (Knowledge-Based) agents** combine
 1. A *knowledge base (KB):* a list of facts that are known to the agent.
 2. Current percepts to **infer hidden** aspects of the current state using **Rules of inference**

- **Logic** provides a good formal language for both
 - Facts encoded as **axioms**
 - Rules of inference
The Knowledge Base

A set of *sentences*
- that *encodes assertions* about the worldi
- in a formal *knowledge representation language*.

![Diagram](Diagram.png)

Declarative approach to building an agent:
- **Tell** it what it needs to know – add fact to KB.
- **Ask** it what to do – compute using *inference rules* also in KB
Generic KB-Based Agent Pseudocode

function KB-AGENT(percept) returns an action
 static: KB, a knowledge base
 t, a counter, initially 0, indicating time
 TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
 action ← ASK(KB, MAKE-ACTION-QUERY(t))
 TELL(KB, MAKE-ACTION-SENTENCE(action, t))
 t ← t + 1
 return action

- Agent must be able to:
 1. Represent states and actions,
 2. Incorporate new percepts
 3. Update internal representation of the world
 4. Deduce hidden properties of the world
 5. Deduce appropriate actions – requires some logic of action
3. Propositional Logic

- Propositional logic is the simplest logic – illustrates basic ideas
- Inference in propositional logic is also *tractable* with reasonable constraints – therefore very useful
LOGIC: What is a logic?

- A formal language with associated
 - **Syntax** – what expressions are *legal* (well-formed)
 - **Semantics** – what legal expressions *mean*
 - in logic, meaning is defined by the *truth* of each sentence *with respect to a set of possible worlds*
 - Possible world (simplified): an assignment of values to all logical variables

- e.g. the language of arithmetic
 - **Syntax**: $X+2 \geq y$ is a legal sentence, x^2+y is not a legal sentence
 - **Semantics**: $X+2 \geq y$ is true in a world where $x=7$ and $y=1$
 - **Semantics**: $X+2 \geq y$ is false in a world where $x=0$ and $y=6$
Propositional logic: *Syntax*

Recursively defined:

Base case:
- The atomic proposition symbols P_1, P_2 etc are sentences

Recursion:
- If S is a sentence, $\neg S$ is a sentence \textbf{(negation)}
- If S_1 and S_2 are sentences, $S_1 \land S_2$ is a sentence \textbf{(conjunction)}
- If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence \textbf{(disjunction)}
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence \textbf{(implication)}
- If S_1 and S_2 are sentences, $S_1 \iff S_2$ is a sentence \textbf{(biconditional)}
Propositional logic: \textit{Semantics}

Each model/world specifies true or false for each proposition symbol

E.g. \begin{tabular}{ccc}
$P_{1,2}$ & $P_{2,2}$ & $P_{3,1}$ \\
false & true & false
\end{tabular}

With these three symbols, 2^3 possible models (worlds), can be enumerated automatically.

Rules for evaluating truth with respect to a model m:

(\text{not}) \quad \neg S \quad \text{is true iff } S \text{ is false}

(\text{and}) \quad S_1 \land S_2 \quad \text{is true iff } S_1 \text{ is true and } S_2 \text{ is true}

(\text{or}) \quad S_1 \lor S_2 \quad \text{is true iff } S_1 \text{ is true or } S_2 \text{ is true}

(\text{if..then}) \quad S_1 \Rightarrow S_2 \quad \text{is true iff } S_1 \text{ is false or } S_2 \text{ is true}

\text{i.e., is false iff } S_1 \text{ is true and } S_2 \text{ is false}

(\text{if and only if}) \quad S_1 \Leftrightarrow S_2 \quad \text{is true iff } S_1 \Rightarrow S_2 \text{ is true and } S_2 \Rightarrow S_1 \text{ is true}

Simple recursive process evaluates an arbitrary sentence, e.g.,

$$\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$$
Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in $[i, j]$. Let $B_{i,j}$ be true if there is a breeze in $[i, j]$.

start:

$\neg P_{1,1}$
$\neg B_{1,1}$
$B_{2,1}$

"Pits cause breezes in adjacent squares"

$B_{1,1} \iff (P_{1,2} \lor P_{2,1})$

$B_{2,1} \iff (P_{1,1} \lor P_{2,2} \lor P_{3,1})$
Model Theory

- Logicians often think in terms of *models*
 - Formally structured “*worlds*” with respect to which truth can be evaluated

- We say m is a *model of* a sentence α if α is true in m

- $M(\alpha)$ is the set of *all* models of α

(Usually, logicians are interested in models of mathematical structures. AI-types are interested in models of common-sense objects and activities.)
A key semantic relation: \textit{Entailment}

- \textit{Entailment} means that the \textit{truth} of one sentence \textit{follows} from the \textit{truth of} another:

\[\text{KB } \models \alpha \]

Knowledge base \textit{KB entails} sentence \(\alpha \) if and only if \(\alpha \) is true in \textit{all worlds} where \textit{KB} is true

- e.g., the KB containing \textit{the Giants won and the Reds lost} entails \textit{The Giants won}
- e.g., the KB containing \(x+y = 4 \) entails \(4 = x+y \)

- \textit{Entailment is a relationship between sentences based on semantics}
Models II

- **Review:**
 - **m is a model of** a sentence α if α is true in m
 - $M(\alpha)$ is the set of all models of α

- **Entailment:**
 - $KB \models \alpha$ iff $M(KB) \subseteq M(\alpha)$
 - **Example:**
 - $KB = $ Giants won and Reds lost
 - $\alpha = $ Giants won
Entailment in the wumpus world

- Consider possible models for KB assuming only pits and a reduced Wumpus world with only 5 squares and pits

- Situation after
 A. detecting nothing in $[1,1]$,
 B. moving right, breeze in $[2,1]$:

```
?  ?
A  B
A  ?
```
Wumpus models I

All possible models (exactly 8) in this reduced Wumpus world.
Wumpus models II

- In Red: all possible wumpus-worlds consistent with the observations on slide 22 and the “physics” of the Wumpus world.
Deciding what to do by *model checking* I

\[\alpha_1 = "[1,2] is safe", \quad KB \models \alpha_1, \text{ proved by model checking} \]
Deciding what to do by model checking II

\[\alpha_2 = \"[2,2] is safe\", \ KB \not\models \alpha_2 \]
Truth tables for connectives

- Truth tables enumerate all possible propositional models
- Thus, truth tables are a simple form of model checking

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>¬P</th>
<th>P ∧ Q</th>
<th>P ∨ Q</th>
<th>P ⇒ Q</th>
<th>P ⇔ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>f</td>
<td>false</td>
<td>true</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>t</td>
<td>true</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
<td>false</td>
</tr>
<tr>
<td>t</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

OR: P or Q is true or both are true.

XOR: P or Q is true but not both.

Implication is always true when the premises are False!
Inference Procedures

- **KB \(\vdash_i \alpha \):** sentence \(\alpha \) can be *derived* from \(KB \) by procedure \(i \)

- **Soundness:** \(i \) is *sound* if whenever \(KB \vdash_i \alpha \), it is also true that \(KB \models \alpha \)
 - No false inferences
 - *(but all true statements might not be derived)*

- **Completeness:** \(i \) is *complete* if whenever \(KB \models \alpha \), it is also true that \(KB \vdash_i \alpha \)
 - All true sentences can be derived,
 - *(but some false statements might be derived)*

- **Desirable:** *sound and complete*
Inference by enumeration

- Enumeration of all models (truth tables) is sound and complete.

- For \(n \) symbols, time complexity is \(O(2^n) \)...

- We need a smarter way to do inference!

- One approach: \textit{infer} new logical sentences from the data-base and see if they match a query.
Logical equivalence

- To manipulate logical sentences we need some rewrite rules.
- Two sentences are logically equivalent iff they are true in same models: \(\alpha \equiv \beta \) iff \(\alpha \models \beta \) and \(\beta \models \alpha \)

\[
\begin{align*}
(\alpha \land \beta) & \equiv (\beta \land \alpha) \quad \text{commutativity of } \land \\
(\alpha \lor \beta) & \equiv (\beta \lor \alpha) \quad \text{commutativity of } \lor \\
((\alpha \land \beta) \land \gamma) & \equiv (\alpha \land (\beta \land \gamma)) \quad \text{associativity of } \land \\
((\alpha \lor \beta) \lor \gamma) & \equiv (\alpha \lor (\beta \lor \gamma)) \quad \text{associativity of } \lor \\
\neg(\neg \alpha) & \equiv \alpha \quad \text{double-negation elimination} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\
(\alpha \Rightarrow \beta) & \equiv (\neg \alpha \lor \beta) \quad \text{implication elimination} \\
(\alpha \iff \beta) & \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\
\neg(\alpha \land \beta) & \equiv (\neg \alpha \lor \neg \beta) \quad \text{de Morgan} \\
\neg(\alpha \lor \beta) & \equiv (\neg \alpha \land \neg \beta) \quad \text{de Morgan} \\
(\alpha \land (\beta \lor \gamma)) & \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma)) \quad \text{distributivity of } \land \text{ over } \lor \\
(\alpha \lor (\beta \land \gamma)) & \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma)) \quad \text{distributivity of } \lor \text{ over } \land
\end{align*}
\]
Validity and satisfiability

A sentence is **valid** if it is true in all models,
e.g. \(\text{True}, \ A \lor \neg A, \ A \Rightarrow A, \ (A \land (A \Rightarrow B)) \Rightarrow B \)

Validity is connected to inference via the **Deduction Theorem**:
\[KB \models \alpha \text{ if and only if } (KB \Rightarrow \alpha) \text{ is valid} \]

A sentence is **satisfiable** if it is true in some model
e.g. \(A \lor B, \ C \)

A sentence is **unsatisfiable** if it is false in all models
e.g. \(A \land \neg A \)

Satisfiability is connected to inference via the following:
\[KB \models \alpha \text{ if and only if } (KB \land \neg \alpha) \text{ is unsatisfiable} \]
\[(\text{there is no model for which } KB=\text{true and } \alpha \text{ is false}) \]