Intelligent Agents

AIMA, Chapter 2.1-2.2
Roadmap for Module 1

- **Today: Rational Agents (Chap 2.1-2.2)**
- **Today: Introduction to Python – Part 1**
 - Homework 1 distributed: Python
- **Thursday: Introduction to Python – Part 2**
- **Tuesday, Sept 9:**
 - Task Environments (Chap 2.3)
 - Problem Formulation (Chap 3.1-3.3)
Agents and environments

- An agent is specified by an *agent function* f that maps a sequence of percepts $Y = [y_0, y_1, \ldots, y_t]$ to an action $a \in A$, $A = \{a_0, a_1, \ldots, a_k\}$
Agents

- An *agent* is anything that can be viewed as
 - *perceiving* its *environment* through *sensors* and
 - *acting* upon that environment through *actuators*

- **Human agent:**
 - Sensors: eyes, ears, ...
 - Actuators: hands, legs, mouth, ...

- **Robotic agent:**
 - Sensors: cameras and infrared range finders
 - Actuators: various motors

- **Agents include humans, robots, softbots, thermostats, ...**
Agent function & program

- The *agent program* runs on the physical *architecture* to produce f
 - $agent = architecture + program$

- “Easy” solution: table that maps every possible sequence Y to an action a
 - One small problem: exponential in length of Y
Example: A Vacuum-cleaner agent

- **Percepts:** location and contents, e.g., \((A, \text{dirty})\)
 - (Idealization: locations are discrete)
- **Actions:** move, clean, do nothing:
 - LEFT, RIGHT
 - SUCK
 - NOP
Vacuum-cleaner world: agent function

<table>
<thead>
<tr>
<th>Percept sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[B, Clean]</td>
<td>Left</td>
</tr>
<tr>
<td>[B, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[A, Clean], [A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Clean], [A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>::</td>
<td>::</td>
</tr>
</tbody>
</table>

function `REFLEX-VACUUM-AGENT([location, status])` **returns an action**

```python
def REFLEX-VACUUM-AGENT([location, status]):
    if status == 'Dirty':
        return 'Suck'
    elif location == 'A':
        return 'Right'
    elif location == 'B':
        return 'Left'
```

8/28/2014

CIS 391 - Fall 2014
Rational agents II

- **Rational Agent**: For each possible percept sequence, a rational agent should select an action that is *expected to maximize* its *performance measure*.

- **Performance measure**: An objective criterion for success of an agent's behavior, given the evidence provided by the percept sequence.

- A performance measure for a vacuum-cleaner agent might include one or more of:
 - +1 point for each clean square in time T
 - +1 point for clean square, -1 for each move
 - -1000 for more than k dirty squares
Rationality is *not* omniscience

- **Ideal agent**: maximizes *actual* performance, but needs to be *omniscient*.
 - Usually impossible…..
 - But consider tic-tac-toe agent…
 - Rationality \neq Success

- Agents can perform actions in order to modify future percepts so as to obtain useful information (*information gathering, exploration*)

- An agent is *autonomous* if its behavior is determined by its own experience (with ability to learn and adapt)
Outline for rest of lecture

- **Rational Agents**
- Defining Task Environments
- Environment types
- Agent types
Agents and environments

- An agent is specified by an agent function \(f: P \rightarrow a \) that maps sequences of percepts \(P \) to an action \(a \) from a set \(A \):

\[
P = [p_0, p_1, \ldots, p_t]
\]

\[
A = \{a_0, a_1, \ldots, a_k\}
\]
Agents

- An *agent* is anything that can be viewed as
 - *perceiving* its *environment* through *sensors* and
 - *acting* upon that environment through *actuators*

- **Human agent:**
 - Sensors: eyes, ears, ...
 - Actuators: hands, legs, mouth, ...

- **Robotic agent:**
 - Sensors: cameras and infrared range finders
 - Actuators: various motors

- **Agents include humans, robots, softbots, thermostats, ...**
Agent function & program

- The *agent program* runs on the physical *architecture* to produce f
 - $agent = architecture + program$

- “Easy” solution: table that maps every possible sequence P to an action a
 - One small problem: exponential in length of P
Example: A Vacuum-cleaner agent

- Percepts: location and contents, e.g., \((A, \text{dirty})\)
 - (Idealization: locations are discrete)
- Actions: move, clean, do nothing:
 - \(\text{LEFT, RIGHT, SUCK, NOP}\)
Vacuum-cleaner world: agent function

<table>
<thead>
<tr>
<th>Percept sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>([A, \text{Clean}])</td>
<td>Right</td>
</tr>
<tr>
<td>([A, \text{Dirty}])</td>
<td>Suck</td>
</tr>
<tr>
<td>([B, \text{Clean}])</td>
<td>Left</td>
</tr>
<tr>
<td>([B, \text{Dirty}])</td>
<td>Suck</td>
</tr>
<tr>
<td>([A, \text{Clean}], [A, \text{Clean}])</td>
<td>Right</td>
</tr>
<tr>
<td>([A, \text{Clean}], [A, \text{Dirty}])</td>
<td>Suck</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

function \textsc{Reflex-Vacuum-Agent}([\text{location, status}]) \textbf{returns an action}

\[
\begin{align*}
\text{if } \text{status} = \text{Dirty} \text{ then return } & \text{Suck} \\
\text{else if } \text{location} = A \text{ then return } & \text{Right} \\
\text{else if } \text{location} = B \text{ then return } & \text{Left}
\end{align*}
\]
Rational agents II

- **Rational Agent**: For each possible percept sequence, a rational agent should select an action that is *expected to maximize* its *performance measure*.

- **Performance measure**: An objective criterion for success of an agent's behavior, given the evidence provided by the percept sequence.

- A performance measure for a vacuum-cleaner agent might include one or more of:
 - +1 point for each clean square in time T
 - +1 point for clean square, -1 for each move
 - -1000 for more than k dirty squares
Rationality is *not* omniscience

- Ideal agent: maximizes *actual* performance, but needs to be *omniscient*.
 - Usually impossible…..
 - But consider tic-tac-toe agent…
 - Rationality ≠ Success

- Agents can perform actions in order to modify future percepts so as to obtain useful information (*information gathering, exploration*)

- An agent is *autonomous* if its behavior is determined by its own experience with ability to learn and adapt
 (*Book’s definition – standard usage differs.*)