Informed Search II

1. When A* fails – Hill climbing, simulated annealing
2. Genetic algorithms

When A* doesn’t work
AIMA 4.1

A few slides adapted from CS 471, UBMC and Eric Eaton (in turn, adapted from slides by Charles R. Dyer, University of Wisconsin-Madison)

Outline

- Local Search: Hill Climbing
- Escaping Local Maxima: Simulated Annealing
- Genetic Algorithms

Local search and optimization

- Local search:
 - Use single current state and move to neighboring states.
 - Idea: start with an initial guess at a solution and incrementally improve it until it is one
- Advantages:
 - Use very little memory
 - Find often reasonable solutions in large or infinite state spaces.
- Useful for pure optimization problems.
 - Find or approximate best state according to some objective function
 - Optimal if the space to be searched is convex

Hill Climbing on a surface of states

h(s): Estimate of distance from a peak (smaller is better)

OR: Height Defined by Evaluation Function (greater is better)
Hill-climbing search

I. While (a uphill points):
 • Move in the direction of increasing evaluation function \(f \)

II. Let \(s_{\text{next}} = \arg\max_{s} f(s) \), \(s \) a successor state to the current state \(n \)
 • If \(f(n) < f(s) \) then move to \(s \)
 • Otherwise halt at \(n \)

• Properties:
 - Terminates when a peak is reached.
 - Does not look ahead of the immediate neighbors of the current state.
 - Chooses randomly among the set of best successors, if there is more than one.
 - Doesn’t backtrack, since it doesn’t remember where it’s been
• a.k.a. greedy local search

"Like climbing Everest in thick fog with amnesia"

Hill-climbing Example: \(n \)-queens

• \(n \)-queens problem: Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal
• Good heuristic: \(h \) = number of pairs of queens that are attacking each other

h=5
h=3
(h for illustration)

Hill-climbing example I (minimizing \(h \))

<table>
<thead>
<tr>
<th>start</th>
<th>h_{\text{hop}} = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1 2</td>
<td>1 2</td>
</tr>
<tr>
<td>4 5 8</td>
<td>3 4 5</td>
</tr>
<tr>
<td>6 7</td>
<td>6 7 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>end</th>
<th>h_{\text{hop}} = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2</td>
<td>3 1 2</td>
</tr>
<tr>
<td>3</td>
<td>4 5 8</td>
</tr>
<tr>
<td>6 7 8</td>
<td>6 7 8</td>
</tr>
</tbody>
</table>

Hill-climbing example: 8-queens

A state with \(h=17 \) and the \(h \)-value for each possible successor

\(h = \) number of pairs of queens that are attacking each other

A local minimum of \(h \) in the 8-queens state space (\(h=1 \)).

Drawbacks of hill climbing

• Local Maxima: peaks that aren’t the highest point in the space
• Plateaus: the space has a broad flat region that gives the search algorithm no direction (random walk)
• Ridges: dropoffs to the sides; steps to the North, East, South and West may go down, but a step to the NW may go up.
Toy Example of a local "maximum"

```
start
4 1 2
3 5
6 7 8
```

```
goal
4 1 2
3 7 5
6 8
```

The Shape of an Easy Problem (Convex)

Gradient ascent/descent

- Gradient descent procedure for finding the \(\arg \min f(x) \)
 - choose initial \(x \) randomly
 - repeat
 - \(x_{i+1} = x_i - \eta \cdot \nabla f(x) \)
 - until the sequence \(x_0, x_1, \ldots, x_i, x_{i+1} \) converges
- Step size \(\eta \) (eta) is small (perhaps 0.1 or 0.05)

Gradient methods vs. Newton’s method

- A reminder of Newton’s method from Calculus:
 \(x_{i+1} = x_i - \eta \cdot \nabla f(x) / \nabla^2 f(x) \)
- Newton’s method uses 2nd-order information (the second derivative, or curvature) to take a more direct route to the minimum
- The second-order information is more expensive to compute, but converges quicker

The Shape of a Harder Problem

The Shape of a Yet Harder Problem
One Remedy to Drawbacks of Hill Climbing: Random Restart

- In the end: Some problem spaces are great for hill climbing and others are terrible.

Simulated Annealing

Simulated annealing (SA)

- **Annealing**: the process by which a metal cools and freezes into a minimum-energy crystalline structure (the annealing process)
- Conceptually SA exploits an analogy between annealing and the search for a minimum in a more general system.
 - **AIMA**: Switch viewpoint from hill-climbing to gradient descent
 - (But: AIMA algorithm hill-climbs & larger ΔE is good...)
 - SA hill-climbing can avoid becoming trapped at local maxima.
 - SA uses a random search that occasionally accepts changes that decrease objective function f.
 - SA uses a control parameter T, which by analogy with the original application is known as the system "temperature."
 - T starts out high and gradually decreases toward 0.

Applicability

- Discrete Problems where state changes are transforms of local parts of the configuration
 - E.g. Travelling Salesman problem, where moves are swaps of the order of two cities visited:
 - Pick an initial tour randomly
 - Successors are all neighboring tours, reached by swapping adjacent cities in the original tour
 - Search using simulated annealing.

AIMA Simulated Annealing Algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
input: problem, a problem
schedule, a mapping from time to "temperature"

for $t = 1$ to ∞
 $T = \text{schedule}(t)$
 if $T = 0$ then return current
 next, a randomly selected successor of current
 $\Delta E = \text{next.VALUE} - \text{current.VALUE}$
 if $\Delta E > 0$ then current \leftarrow next
 else current \leftarrow next only with probability $e^{\Delta E/T}$

Nice simulation on web page of travelling salesman approximations via simulated annealing:
Local beam search

- Keep track of k states instead of one
 - Initially: k random states
 - Next: determine all successors of k states
 - If any of successors is goal → finished
 - Else select k best from successors and repeat.

- Major difference with random-restart search
 - Information is shared among k search threads.

- Can suffer from lack of diversity.
 - Stochastic variant: choose k successors proportionally to state success.

Genetic Algorithms

Genetic algorithms

1. Start with k random states (the initial population)
2. New states are generated by either
 1. “Mutation” of a single state or
 2. “Sexual Reproduction”: (combining) two parent states (selected proportionally to their fitness)

- Encoding used for the “genome” of an individual strongly affects the behavior of the search
- Similar (in some ways) to stochastic beam search

Representation: Strings of genes

- Each chromosome represents a possible solution
 - made up of a string of genes
- Each gene encodes some property of the solution
- There is a fitness metric on phenotypes of chromosomes
 - Evaluation of how well a solution with that set of properties solves the problem.
- New generations are formed by
 - Crossover: sexual reproduction
 - Mutation: asexual reproduction

Encoding of a Chromosome

- The chromosome encodes characteristics of the solution which it represents, often as a string of binary digits.

 Chromosome 1: 1101100100011110
 Chromosome 2: 1101111000011110

- Each set of bits represents some dimension of the solution.

Example: Genetic Algorithm for Drive Train

Genes for:
- Number of Cylinders
- RPM: 1st -> 2nd
- RPM 2nd -> 3rd
- RPM 3rd -> Drive
- Rear end gear ratio
- Size of wheels

A chromosome specifies a full drive train design.
Reproduction

- Reproduction by crossover selects genes from two parent chromosomes and creates two new offspring.
- To do this, randomly choose a crossover point (perhaps none).
- For child 1, everything before this point comes from the first parent and everything after from the second parent.
- Crossover looks like this (| is the crossover point):

 | Chromosome 1 | 11001 | 00100110110 |
 | Chromosome 2 | 10011 | 11000011110 |
 | Offspring 1 | 11001 | 11000011110 |
 | Offspring 2 | 10011 | 00100110110 |

Mutation

- Mutation randomly changes genes in the new offspring.
- For binary encoding we can switch randomly chosen bits from 1 to 0 or from 0 to 1.

 | Original offspring | 110111100001110 |
 | Mutated offspring | 1100111000001110 |

The Basic Genetic Algorithm

1. Generate random population of chromosomes
2. Until the end condition is met, create a new population by repeating following steps
 1. Evaluate the fitness of each chromosome
 2. Select two parent chromosomes from a population, weighed by their fitness
 3. With probability p_c cross over the parents to form a new offspring.
 4. With probability p_m mutate new offspring at each position on the chromosome.
 5. Place new offspring in the new population
3. Return the best solution in current population

Genetic algorithms: 8-queens

A Genetic Algorithm Simulation

The Chromosome Layout

- Strengths:
 - Vector Angles and Magnitudes adjacent
 - Adjacent vectors are adjacent
- Weakness:
 - Wheel info (vertex, axle angles & wheel radiuses not linked to vector the wheel is associated with.)
Car from Gen 4: Score: 160 (max)

Best from Generations 20-46: 594.7

The best (gen 26-37) of another series

A variant finishes the course....