Informed Search II

1. When A* fails – Hill climbing, simulated annealing
2. Genetic algorithms

Outline

• Local Search: Hill Climbing
• Escaping Local Maxima: Simulated Annealing
• Genetic Algorithms

Local search and optimization

• Local search:
 • Use single current state and move to neighboring states.
 • Idea: start with an initial guess at a solution and incrementally improve it until it is one
 • Advantages:
 • Use very little memory
 • Find often reasonable solutions in large or infinite state spaces.
 • Also useful for pure optimization problems.
 • Find best state according to some objective function.
 • e.g. survival of the fittest as a metaphor for optimization.

Hill Climbing on a surface of states

h(s): Estimate of distance from a peak (smaller is better)

Height Defined by Evaluation Function (greater is better)
Hill-climbing search

I. While (3 uphill points):
 • Move in the direction of increasing evaluation or, equivalently, decreasing h.

II. If (3 a successor \(s_i \) for the current state \(n \) such that
 — \(h(s_i) < h(n) \)
 — \(h(s_j) \geq h(s_i) \) for all successors \(s_j \) of \(n \), \(j \neq i \):
 • then move from \(n \) to \(s_i \).
 • Otherwise, halt at \(n \).

Properties:
• Terminates when a peak is reached.
• Does not look ahead of the immediate neighbors of the current state.
• Chooses randomly among the set of best successors, if there is more than one.
• Doesn’t backtrack, since it doesn’t remember where it’s been
• a.k.a. greedy local search

"Like climbing Everest in thick fog with amnesia"

Hill-climbing Example I

<table>
<thead>
<tr>
<th>Start state</th>
<th>Goal state</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 1 2</td>
<td>1 2</td>
</tr>
<tr>
<td>4 5 8</td>
<td>3 4 5</td>
</tr>
<tr>
<td>6 7</td>
<td>6 7 8</td>
</tr>
</tbody>
</table>

Hill-climbing Example: \(n \)-queens

\(n \)-queens problem: Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal

Good heuristic: \(h = \) number of pairs of queens that are attacking each other

Hill-climbing example: 8-queens

A state with \(h=17 \) and the \(h \)-value for each possible successor

A local minimum of \(h \) in the 8-queens state space (\(h=1 \)).

\(h \) = number of pairs of queens that are attacking each other

Search Space features

Drawbacks of hill climbing

• Local Maxima: peaks that aren’t the highest point in the space
• Plateaus: the space has a broad flat region that gives the search algorithm no direction (random walk)
• Ridges: dropoffs to the sides; steps to the North, East, South and West may go down, but a step to the NW may go up.
Example of a local maximum

The Shape of an Easy Problem (Convex)

Gradient ascent/descent

Gradient methods vs. Newton’s method

The Shape of a Harder Problem

The Shape of a Yet Harder Problem
One Remedy to Drawbacks of Hill Climbing: Random Restart

- In the end: Some problem spaces are great for hill climbing and others are terrible.

Simulated Annealing

Simulated annealing (SA)

- **Annealing**: the process by which a metal cools and freezes into a minimum-energy crystalline structure (the annealing process)
- SA exploits an analogy between annealing and the search for a minimum in a more general system.
 - Switch viewpoint from hill-climbing to gradient descent
- SA can avoid becoming trapped at local minima.
- SA uses a random search that accepts changes that decrease objective function \(f \), as well as some that increase it.
- SA uses a control parameter \(T \), which by analogy with the original application is known as the system "temperature."
- \(T \) starts out high and gradually decreases toward 0.

Simulated annealing (cont.)

- A "bad" move from A to B (\(f(B) < f(A) \)) is accepted with the probability
 \[
 P(\text{move}_{A \rightarrow B}) = e^{\frac{(f(B) - f(A))}{T}}
 \]
- The higher \(T \), the more likely a bad move will be made.
- As \(T \) tends to zero, this probability tends to zero, and SA becomes more like hill climbing
- If \(T \) is lowered slowly enough, SA is complete and admissible.

Local beam search

- Keep track of \(k \) states instead of one
 - Initially: \(k \) random states
 - Next: determine all successors of \(k \) states
 - If any of successors is goal → finished
 - Else select \(k \) best from successors and repeat.
- Major difference with random-restart search
 - Information is shared among \(k \) search threads.
- Can suffer from lack of diversity.
 - Stochastic variant: choose \(k \) successors proportionally to state success.

Genetic Algorithms
Genetic algorithms

1. Start with k random states (the initial population)
2. New states are generated by either
 1. “Mutation” of a single state or
 2. “Sexual Reproduction”: (combining) two parent states (selected proportionally to their fitness)

- Encoding used for the “genome” of an individual strongly affects the behavior of the search
- Similar (in some ways) to stochastic beam search

Representation: Strings of genes

- Each chromosome
 - represents a possible solution
 - made up of a string of genes
- Each gene encodes some property of the solution
- There is a fitness metric on phenotypes of chromosomes
 - Evaluation of how well a solution with that set of properties solves the problem.
- New generations are formed by
 - Crossover: sexual reproduction
 - Mutation: asexual reproduction

Encoding of a Chromosome

- The chromosome encodes characteristics of the solution which it represents, often as a string of binary digits.

| Chromosome 1 | 11011000011010110 |
| Chromosome 2 | 110111100011110110 |

- Each set of bits represents some dimension of the solution.

Example: Genetic Algorithm for Drive Train

Genes for:
- Number of Cylinders
- RPM: 1st -> 2nd
- RPM 2nd -> 3rd
- RPM 3rd -> Drive
- Rear end gear ratio
- Size of wheels

A chromosome specifies a full drive train design

Reproduction

- Reproduction by crossover selects genes from two parent chromosomes and creates two new offspring.
- To do this, randomly choose a crossover point (perhaps none).
- For child 1, everything before this point comes from the first parent and everything after from the second parent.
- Crossover looks like this ($|$ is the crossover point):

Chromosome 1	11001	00100110110
Chromosome 2	10111	11000011110
Offspring 1	11001	11000011110
Offspring 2	10111	00100110110

Mutation

- Mutation randomly changes genes in the new offspring.
- For binary encoding we can switch randomly chosen bits from 1 to 0 or from 0 to 1.

| Original offspring | 1101111000011110 |
| Mutated offspring | 1101111000011110 |
The Basic Genetic Algorithm

1. Generate random population of chromosomes
2. Until the end condition is met, create a new population by repeating following steps
 1. Evaluate the fitness of each chromosome
 2. Select two parent chromosomes from a population, weighed by their fitness
 3. With probability p_c cross over the parents to form a new offspring.
 4. With probability p_m mutate new offspring at each position on the chromosome.
 5. Place new offspring in the new population
3. Return the best solution in current population

Genetic algorithms: 8-queens

A Genetic Algorithm Simulation

The Chromosome Layout

- Strengths:
 - Vector Angles and Magnitudes adjacent
 - Adjacent vectors are adjacent
- Weakness:
 - Wheel info (vertex, axle angles & wheel radiiues not linked to vector the wheel is associated with.)

Car from Gen 4: Score: 160 (max)

Best from Generations 20-46: 594.7