Informed Search II

1. When A* fails – Hill climbing, simulated annealing
2. Genetic algorithms
When A^* doesn’t work
AIMA 4.1

A few slides adapted from CS 471, UBMC and Eric Eaton (in turn, adapted from slides by Charles R. Dyer, University of Wisconsin-Madison)
Outline

- Local Search: Hill Climbing
- Escaping Local Maxima: Simulated Annealing
- Genetic Algorithms
Local search and optimization

- **Local search:**
 - Use single current state and move to neighboring states.
- **Idea:** start with an initial guess at a solution and incrementally improve it until it is one.
- **Advantages:**
 - Use very little memory
 - Find often *reasonable* solutions in large or infinite state spaces.
- **Useful for pure optimization problems.**
 - Find or approximate best state according to some *objective function*
 - *Optimal if the space to be searched is convex*
Hill Climbing
Hill climbing on a surface of states

$h(s)$: Estimate of distance from a peak (smaller is better)

OR: Height Defined by Evaluation Function (greater is better)
Hill-climbing search

I. While (∃ uphill points):
 • Move in the direction of increasing evaluation function \(f \)

II. Let \(s_{\text{next}} = \arg \max_s f(s) \), \(s \) a successor state to the current state \(n \)
 • If \(f(n) < f(s) \) then move to \(s \)
 • Otherwise halt at \(n \)

• Properties:
 • Terminates when a peak is reached.
 • Does not look ahead of the immediate neighbors of the current state.
 • Chooses randomly among the set of best successors, if there is more than one.
 • Doesn’t backtrack, since it doesn’t remember where it’s been

• a.k.a. greedy local search

"Like climbing Everest in thick fog with amnesia"
Hill climbing example I (minimizing h)

Start:
- $h_{oop} = 5$
- Configuration:
 - 3 1 2
 - 4 5 8
 - 6 7

Goal:
- $h_{oop} = 0$
- Configuration:
 - 1 2
 - 3 4 5
 - 6 7 8

Steps:
1. **$h_{oop} = 4$**
 - Configuration:
 - 3 1 2
 - 4 5 8
 - 6 7
 - Move: 6 to 5
2. **$h_{oop} = 3$**
 - Configuration:
 - 3 1 2
 - 4 5
 - 6 7 8
 - Move: 5 to 4
3. **$h_{oop} = 2$**
 - Configuration:
 - 3 1 2
 - 4 5
 - 6 7 8
 - Move: 4 to 5
4. **$h_{oop} = 1$**
 - Configuration:
 - 3 1 2
 - 4
 - 6 7 8
 - Move: 5 to 4
5. **$h_{oop} = 0$**
 - Configuration:
 - 3 1 2
 - 4
 - 6 7 8
 - Move: 4 to 5

CIS 391 - Intro to AI
Hill-climbing Example: \(n \)-queens

- \(n \)-queens problem: Put \(n \) queens on an \(n \times n \) board with no two queens on the same row, column, or diagonal.

- Good heuristic: \(h = \) number of pairs of queens that are attacking each other.

\[\begin{align*}
\text{h=5} & \quad \rightarrow \quad \text{h=3} \quad \rightarrow \quad \text{h=1} \\
\text{(for illustration)}
\end{align*} \]
Hill-climbing example: 8-queens

A state with $h=17$ and the h-value for each possible successor

A local minimum of h in the 8-queens state space ($h=1$).

$h =$ number of pairs of queens that are attacking each other
Search Space features

- objective function
- global maximum
- shoulder
- local maximum
- “flat” local maximum
- current state
- state space
Drawbacks of hill climbing

- Local Maxima: peaks that aren’t the highest point in the space
- Plateaus: the space has a broad flat region that gives the search algorithm no direction (random walk)
- Ridges: dropoffs to the sides; steps to the North, East, South and West may go down, but a step to the NW may go up.
Toy Example of a local "maximum"

```
start

4 1 2
3 5
6 7 8

1

goal

4 1 2
3 1 5
6 7 8
2

4 1 2
3 7 5
6 8
2

4 1 2
3 5
6 7 8
2

1 2
3 4 5
6 7 8
0
```
The Shape of an Easy Problem (Convex)

This and next several slides from Goldberg '89
Gradient ascent/descent

Images from http://en.wikipedia.org/wiki/Gradient_descent

- Gradient descent procedure for finding the \(\arg_x \min f(x) \)
 - choose initial \(x_0 \) randomly
 - repeat
 - \(x_{i+1} \leftarrow x_i - \eta f'(x_i) \)
 - until the sequence \(x_0, x_1, \ldots, x_i, x_{i+1} \) converges
- Step size \(\eta \) (eta) is small (perhaps 0.1 or 0.05)
Gradient methods vs. Newton’s method

• A reminder of Newton's method from Calculus:
 \[x_{i+1} \leftarrow x_i - \eta f'(x_i) / f''(x_i) \]

• Newton's method uses 2nd order information (the second derivative, or, curvature) to take a more direct route to the minimum.

• The second-order information is more expensive to compute, but converges quicker.

Contour lines of a function
Gradient descent (green)
Newton’s method (red)

Image from http://en.wikipedia.org/wiki/Newton%27s_method_in_optimization

(this and previous slide from Eric Eaton)
The Shape of a Harder Problem
The Shape of a Yet Harder Problem
One Remedy to Drawbacks of Hill Climbing: Random Restart

- In the end: Some problem spaces are great for hill climbing and others are terrible.
Simulated Annealing
Simulated annealing (SA)

- **Annealing**: the process by which a metal cools and freezes into a minimum-energy crystalline structure (the annealing process).

- Conceptually SA exploits an analogy between annealing and the search for a minimum in a more general system.
 - AIMA: Switch viewpoint from *hill-climbing* to *gradient descent*
 - *(But: AIMA algorithm hill-climbs & larger ΔE is good...)*

- SA *hill-climbing* can avoid becoming trapped at local maxima.

- SA uses a random search that occasionally accepts changes that decrease objective function f.

- SA uses a control parameter T, which by analogy with the original application is known as the system *"temperature."*

- T starts out high and gradually decreases toward 0.
Simulated annealing (cont.)

- A "bad" move from A to B \((f(B) < f(A))\) is accepted with the probability
 \[
P(\text{move}_{A\rightarrow B}) = e^{(f(B) - f(A)) / T}
\]

- The higher \(T\), the more likely a bad move will be made.
- As \(T\) tends to zero, this probability tends to zero, and SA becomes more like hill climbing
- *If \(T\) is lowered slowly enough, SA is complete and admissible.*
Applicability

- Discrete Problems where state changes are transforms of local parts of the configuration

 - E.G. Travelling Salesman problem, where moves are swaps of the order of two cities visited:
 - Pick an initial tour randomly
 - Successors are all neighboring tours, reached by swapping adjacent cities in the original tour
 - Search using simulated annealing.
AIMA Simulated Annealing Algorithm

function SIMULATED-ANNEALING(problem, schedule) returns a solution state
input: problem, a problem
 schedule, a mapping from time to “temperature”

current ← MAKE-NODE(problem.INITIAL-STATE)
for t ← 1 to ∞ do
 T ← schedule(t)
 if T = 0 then return current
 next ← a randomly selected successor of current
 ΔE ← next.VALUE – current.VALUE
 if ΔE > 0 then current ← next
 else current ← next only with probability $e^{ΔE / T}$

Nice simulation on web page of travelling salesman approximations via simulated annealing:
Local beam search

- Keep track of k states instead of one
 - Initially: k random states
 - Next: determine all successors of k states
 - If any of successors is goal \rightarrow finished
 - Else select k best from successors and repeat.

- Major difference with random-restart search
 - Information is shared among k search threads.

- Can suffer from lack of diversity.
 - Stochastic variant: choose k successors proportionally to state success.
Genetic Algorithms
Genetic algorithms

1. Start with k random states (the *initial population*)

2. New states are generated by either
 1. “*Mutation*” of a single state or
 2. “*Sexual Reproduction*”: (combining) two *parent states* (selected proportionally to their *fitness*)

- Encoding used for the “*genome*” of an individual strongly affects the behavior of the search
- Similar (in some ways) to stochastic beam search
Representation: Strings of genes

- Each *chromosome*
 - represents a possible solution
 - made up of a string of genes
- Each *gene* encodes some property of the solution
- There is a *fitness metric* on phenotypes of chromosomes
 - Evaluation of how well a solution with that set of properties solves the problem.
- New generations are formed by
 - Crossover: sexual reproduction
 - Mutation: asexual reproduction
Encoding of a Chromosome

- The chromosome encodes characteristics of the solution which it represents, often as a string of binary digits.
 - Chromosome 1: 1101100100110110
 - Chromosome 2: 1101111000011110

- Each set of bits represents some dimension of the solution.
Example: Genetic Algorithm for Drive Train

Genes for:

- Number of Cylinders
- RPM: 1st -> 2nd
- RPM 2nd -> 3rd
- RPM 3rd -> Drive
- Rear end gear ratio
- Size of wheels

A chromosome specifies a full drive train design
Reproduction

- Reproduction by *crossover* selects genes from two parent chromosomes and creates two new offspring.
- To do this, randomly choose a crossover point (perhaps none).
- For child 1, everything before this point comes from the first parent and everything after from the second parent.
- Crossover looks like this (| is the crossover point):

 Chromosome 1 11001 | 00100110110
 Chromosome 2 10011 | 11000011110

 Offspring 1 11001 | 11000011110
 Offspring 2 10011 | 00100110110
Mutation

- Mutation randomly changes genes in the new offspring.
- For binary encoding we can switch randomly chosen bits from 1 to 0 or from 0 to 1.

Original offspring 1101111000011110
Mutated offspring 1100111000001110
The Basic Genetic Algorithm

1. Generate random population of chromosomes
2. Until the end condition is met, create a new population by repeating following steps
 1. Evaluate the fitness of each chromosome
 2. Select two parent chromosomes from a population, weighed by their fitness
 3. With probability \(p_c \) cross over the parents to form a new offspring.
 4. With probability \(p_m \) mutate new offspring at each position on the chromosome.
 5. Place new offspring in the new population
3. Return the best solution in current population
Genetic algorithms: 8-queens
A Genetic Algorithm Simulation

BoxCar 2D

www.boxcar2d.com
The Chromosome Layout

- **Strengths:**
 - Vector Angles and Magnitudes adjacent
 - Adjacent vectors are adjacent
- **Weakness:**
 - Wheel info (vertex, axle angles & wheel radiuses not linked to vector the wheel is associated with.)
Car from Gen 4: Score: 160 (max)

BoxCar 2D

Genetic Algorithm Car Evolution Using Box2D Physics (v2.1)

Score: 144.2 Time: 1:48
Best from Generations 20-46: 594.7

BoxCar 2D

Genetic Algorithm Car Evolution Using Box2D Physics (v2.1)

CIS 391 - Intro to AI
The best (gen 26-37) of another series
A variant finishes the course....