Search II: Uninformed Search Strategies

AIMA 3.4

Iterative-Deepening Search
Bidirectional Search
Uniform-Cost Search
The Goat, Cabbage, Wolf Problem

Problem: The boat only holds two, but you can't leave the goat with the cabbage or the wolf with the goat.

Solution: 1. Take the goat across.

2. Return alone.

3. Take the cabbage across.

4. Leave the wolf. Why did you have a wolf?

(From xkcd.com)
Iterative Deepening Search
Review: Search Strategies

- Dimensions for evaluation
 - Completeness - always find the solution?
 - Time complexity - # of nodes generated
 - Space complexity - # of nodes in memory
 - Optimality - finds a least cost solution (lowest path cost)?

- Time/space complexity measurements
 - b, maximum branching factor of search tree
 - d, depth of the shallowest goal node
 - m, maximum length of any path in the state space (potentially ∞)
Search Conundrum

- **Breadth-first**
 - Complete
 - uses $O(b^d)$ space

- **Depth-first**
 - Not complete unless m is bounded
 - Uses $O(b^m)$ time; terrible if $m \gg d$
 - *but* only uses $O(b \times m)$ space

How can we get the best of both?
Depth-limited search: A building block

- Depth-First search but with depth limit ℓ
 - i.e. nodes at depth ℓ have no successors.
- Solves the infinite-path problem.
- If $\ell = d$ (by luck!), then optimal
 - But:
 - If $\ell < d$ then incomplete
 - If $\ell > d$ then not optimal

- Time complexity: $O(b^\ell)$
- Space complexity: $O(bl)$
Nodes constructed at each deepening

- Depth 0: 0 (Given the node, doesn’t *construct* it.)
- Depth 1: b^1 nodes
- Depth 2: b nodes + b^2 nodes
- Depth 3: b nodes + b^2 nodes + b^3 nodes
- ...
Iterative deepening search

- A general strategy to find best depth limit ℓ
 - Key idea: use Depth-limited search as subroutine, with increasing ℓ.
 - *Complete & optimal*: Goal is always found at depth d, the depth of the shallowest goal-node.

- Combines benefits of DF-search & BF-search
Iterative Deepening Search

For $d = 0$ to ∞ do

 depth-limited-search to level d

 if it succeeds

 then return solution

 \begin{itemize}
 \item \textit{(for details see full algorithm in AIMA pp 88-90)}
 \end{itemize}

Could this possibly be efficient?
Total nodes constructed:

- Depth 0: 0 (Given the node, doesn’t construct it.)
- Depth 1: b^1 nodes
- Depth 2: b nodes + b^2 nodes
- Depth 3: b nodes + b^2 nodes + b^3 nodes
- ...

Suppose the first solution is the last node at depth 3:

Total nodes constructed (assuming $b=10$):

$$3b \text{ nodes} + 2b^2 \text{ nodes} + 1b^3 \text{ nodes} = 30 + 200 + 1000 = 1230$$
ID search, Evaluation II: Time Complexity

- More generally, for a search tree with shallowest solution at depth d, worst case, the time complexity is
 - $N(\text{IDS}) = (d+1) + (d)b + (d-1)b^2 + \ldots + (1)b^d = O(b^d)$

- As efficient as Breadth First Search:
 - $N(\text{BFS}) = b + b^2 + b \ldots + b^d = O(b^d)$
ID search, Evaluation III

- Complete: YES (no infinite paths)
- Time complexity: $O(b^d)$
- Space complexity: $O(bd)$
- Optimal: YES if step cost is 1.
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Depth-First</th>
<th>Depth-limited</th>
<th>Iterative deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>YES*</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Time</td>
<td>b^d</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
</tr>
<tr>
<td>Space</td>
<td>b^d</td>
<td>bm</td>
<td>bl</td>
<td>bd</td>
</tr>
<tr>
<td>Optimal?</td>
<td>YES*</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
</tbody>
</table>
Very briefly: Bidirectional search

- Two simultaneous searches from start and goal.
 - Motivation: \[b^{d/2} + b^{d/2} < b^d \]
 - Check whether the node belongs to the other frontier before expansion.
 - Space complexity is the most significant weakness.
 - Complete and optimal if both searches are Breadth-First.
How to search backwards?

- The predecessor of each node must be efficiently computable.
 - Works well when actions are easily reversible.
“Uniform Cost” Search
Motivation: Romanian Map Problem

- All our search methods so far assume \(\text{step-cost} = 1 \)
- \textit{This isn’t always true}
g(N): the path cost function

- **If all moves equal in cost:**
 - Cost = # of nodes in path-1
 - \(g(N) = \text{depth}(N) \)
 - Equivalent to what we’ve been assuming so far

- **Assigning a (potentially) unique cost to each step**
 - \(N_0, N_1, N_2, N_3 \) = nodes visited on path \(p \)
 - \(C(i,j) \): Cost of going from \(N_i \) to \(N_j \)
 - \(g(N_3) = C(0,1) + C(1,2) + C(2,3) \)
Uniform-cost search (UCS)

- Extension of BF-search:
 - Expand node with *lowest path cost*

- Implementation: *frontier* = queue ordered by \(g(n) \)

- Differs from BF-search:
 - Tests if a node is a goal state when it is selected for expansion, not when it is added to the frontier.
 - Updates a node on the frontier if a better path to the same state is found.
 - So always enqueues nodes *before checking whether they are goals*.
 - *WHY???*

- (Dijkstra’s algorithm just UCS without goal)
Uniform Cost Search

Expand cheapest node first:

Frontier is a priority queue

No longer ply at a time, but follows cost contours

Must be optimal
Summary of algorithms (for notes)

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-cost</th>
<th>Depth-First</th>
<th>Depth-limited</th>
<th>Iterative deepening</th>
<th>Bidirectional search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>YES*</td>
<td>YES*</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES*</td>
</tr>
<tr>
<td>Time</td>
<td>(b^d)</td>
<td>(b^d+\frac{C}{e})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
<td>(b^{d/2})</td>
</tr>
<tr>
<td>Space</td>
<td>(b^d)</td>
<td>(b^d+\frac{C}{e})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
<td>(b^{d/2})</td>
</tr>
<tr>
<td>Optimal?</td>
<td>YES*</td>
<td>YES*</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

- If all costs in Uniform-cost search are 1, then time and space both \(O(b^{1+d}) \)