Interactive Automated Sword Fighting Simulations

with Game Tree Search

MOTIVATION

Scenes with many characters battling can be time intensive
and costly if all of the animation is done manually, and
completely automating the animation process runs the risk
of creating animations that are noticeably similar. This
project proposes a method for efficiently producing
automated animations that are capable of interactivity.We
implement an algorithm that has been successfully used to
simulate other zero-sum games such as tic-tac-toe and
checkers.

OBJECTIVE

Apply the Minmax Game Tree search algorithm, which has
been used to efficiently and intelligently simulate play of
other zero-sum games, to a game of swordplay. Create
sword fighting animations that can be automated or
interactive.

METHODOLOGY

A character is built in the Unity Game Engine that is able to
perform the desired motions. There are three attack motions
(left, forward, right) and three defend motions (left, forward,
right) in addition to step forward and step backward.

The game tree algorithm is implemented as shown. A game
configuration consists of the current position and motion
state (what move the player is performing, if any, and for how
many seconds) of each player. The evaluation function is
determined heuristically. It takes into account these factors
and also adds in randomness for the sake of creating
imperfect players. Motions can also be pruned from the tree if
a player is not within the correct range of the other player to
perform the motion.

R. Christine Uyemura
Faculty Advisor: Dr. Stephen Lane

IDEA

A given configuration in
the game corresponds
to a node in the game

tree.

b
-1

A'I_I'ACK FORWARD

k4

DEFEND LEI——I'

)

ATI'ACK RIGHT

f

A'I_I'ACK LEI-—I'

DEFEND FORWARD

w%ﬁﬁ%%

MOVE FORWARD

ﬁ%%%

DEFEND RIGHT

DEFEND RIGHT

The tree Is
“expanded” at the
current node a
certain number of
levels.

Expanding the tree
for more levels

results in a smarter
choice (although a
slower calculation.)

DEFEND RIGHT DEFEND LEFT DEFEND FORWARD MOVE BACKWARD

Level 3

MOVE FORWARD MOVE BACKWARD DEFEND LEFT

LA 1

DEFEND LEFT DEFEND FORWARD

N

K Level 4

The bottom level of
the expanded tree
becomes the leaf
nodes and each
node is given a
score according to
an evaluation
function.

DEFEND RIGHT
e=0

ATI'ACK FORWARD ATTACK RIGHT A'I_I'ACK LEFT

@g%

This move results in a hit by P2

Finally, the player
whose move it is
chooses the move
with the maximum or
minimum score.

\

- <4 P1 (max) \
P2 (min)
If the level
corresponds to a
point where the max
player would move,
the greatest e is
percolated and vice
versa.
P1 (max)
é % - P2 (m|n)
MOVE BACKWARD MOVI;FOF:\(/)VARD
The
evaluation
score, e, IS
percolated up
the tree

Senior Project Poster Day 2013



