
Takua Render:Physically Based Pathtracer
Created by: Yining Karl Li | Advisors: Norm Badler and Aline Normoyle

KD-TREE SPATIAL ACCELERATION STRUCTURE:
Takua Render utilizes a custom, highly optimized Surface-Area 
Heuristic based kd-tree for accelerated intersection testing. Con-
struction takes O(nlogn), traversal takes O(logn) using an efficient, 
short-stack while-while based approach designed specifically for 
optimal GPU traverse performance.

Heat map showing traverse 
cost per pixel for the 
Stanford Dragon test 
model. Brighter colors 
indicate higher cost.

KD-Tree and wireframe for 
a complex kitchen scene 
containing approximately 
two million polygons. Takes 
under 1 second to 
construct.

Traversal path for a single 
ray through a scene. All 
geometry in red boxes 
were culled from 
intersection testing by 
KD-tree traversal, whereas 
green boxes contain 
geometry that had to be 
intersection tested.

SAMPLING TECHNIQUES:
Takua Render supports stratified sampling in addition to 
uniform random sampling in order to decrease variance for the 
same computation time. 

Left side: 64 samples per pixel, stratified sampling. 
Right side: 64 samples per pixel, uniform random sampling. Note the higher 
amount of variance in the uniformly randomly sampled image.

ABSTRACT:
Takua Render is a massively parallel, GPU based physically 
based pathtracing renderer designed to produce photorealis-
tic, film quality images.

MOTIVATION:
Historically, photorealistic rendering has necessitated a 
tradeoff between speed and image quality. In recent years, 
the emergence of general purpose GPU based compute 
through languages such as CUDA has allowed for enormous, 
multiple orders of magnitude speed increases for data 
parallel tasks such as pathtraced rendering. As a result, Takua 
Render can cheat the quality-speed compromise.

ARCHITECTURE:

Ray

Intersection

rayCore

Camera
sceneCore

KDLight
Materials

surfaceCore

Geom
Obj

geomCore

Pathtracer
Integrators

Direct Lighting

etc.

CPU Renderer
Renderers

CUDA Renderer

Debug Utils

SELECTED FEATURES:
-Global illumination via Monte-Carlo pathtracing
-Physically based BRDFs such as Lambertian diffuse, 
specular/reflective, Fresnel reflection/refraction via S-P 
polarization, Schnellʼs law of refraction, and more.
-Brute force Monte-Carlo single scattering
-Custom memory manager and caching system allowing 
assets size to exceed available GPU memory
-Massively parallel CUDA based GPU rendering core AND 
multithreaded x86 CPU rendering core
-Texture and OBJ mesh support
-Direct lighting using multiple importance sampling

RENDER EQUATION:

Senior Project Poster Day 
2013

Department of Computer 
and Information Science,
University of Pennsylvania


