The Simply Typed Lambda-Calculus

Lambda-calculus with booleans

Operational semantics

<table>
<thead>
<tr>
<th>Condition</th>
<th>Rule</th>
<th>Predecessor</th>
<th>Postdecessor</th>
</tr>
</thead>
<tbody>
<tr>
<td>if <code>t1</code> then <code>t2</code> else <code>t3</code></td>
<td><code>t1</code> → <code>t</code></td>
<td><code>t1</code></td>
<td><code>t2</code></td>
</tr>
<tr>
<td>if <code>false</code> then <code>t2</code> else <code>t3</code></td>
<td><code>t2</code></td>
<td><code>t2</code></td>
<td><code>t3</code></td>
</tr>
<tr>
<td>if <code>true</code> then <code>t2</code> else <code>t3</code></td>
<td><code>t3</code></td>
<td><code>t3</code></td>
<td><code>t2</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operation</th>
<th>Rule</th>
<th>Predecessor</th>
<th>Postdecessor</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>E-App1</code></td>
<td><code>t2</code></td>
<td><code>t0</code></td>
<td><code>t2</code></td>
</tr>
<tr>
<td><code>E-App2</code></td>
<td><code>t1</code></td>
<td><code>t0</code></td>
<td><code>t1</code></td>
</tr>
<tr>
<td><code>E-AppAbs</code></td>
<td><code>λx.t</code></td>
<td><code>t</code></td>
<td><code>[x:=t]</code></td>
</tr>
</tbody>
</table>

Terms

Values

Conditional

Ax. `t` :: `t`
Typing rules

(L-Var) \[\frac{ }{ x : T } \]

(L-Type) \[\frac{ }{ T \rightarrow T } \]

(L-True) \[\frac{ }{ \text{true} : \text{Bool} } \]

(L-False) \[\frac{ }{ \text{false} : \text{Bool} } \]

(L-If) \[\frac{ T \rightarrow \text{false} \rightarrow \text{true} : \text{false} } { x : T \rightarrow \text{false} \rightarrow \text{true} } \]

Type of functions

L-types

\[L : \text{bool} \]

\[L = \]
Typing rules

true : Bool

false : Bool

\(t_1 : \text{Bool} \)

\(t_2 : \text{T} \)

\(t_3 : \text{T} \)

\(\text{if } t_1 \text{ then } t_2 \text{ else } t_3 : \text{T} \)

\(x : \text{T} \)

\(t_2 : \text{T} \)

\(x : \text{T} \)

\(t_1 : \text{Bool} \)

\(t_2 : \text{T} \)

\(t_1 : \text{Bool} \)

\(\text{if } x \text{ then } \text{false} \text{ else } x : \text{Bool} \)

Typing Derivations

What derivations justify the following typing statements?

<table>
<thead>
<tr>
<th>Rule</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{T-Var})</td>
<td>(\vdash x : \text{T})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{true} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{true} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{true} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{true} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{true} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{true} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{true} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{true} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{true} : \text{Bool})</td>
</tr>
<tr>
<td>(\text{T-Line})</td>
<td>(\vdash \text{false} : \text{Bool})</td>
</tr>
</tbody>
</table>
As before, the fundamental property of the type system we have just defined is soundness with respect to the operational semantics.

1. Progress:
 A closed, well-typed term is not stuck.
 If \(t : T \) and \(\lambda \ x . \ t \to x \), then \(\lambda \ x . \ t \to x \).

2. Preservation:
 Types are preserved by one-step evaluation.
 If \(t : T \) and \(t \to t' \), then \(\lambda \ x . \ t \to \lambda \ x . \ t' \) for some \(T' \).
 If \(t : T \), then \(\lambda \ x . \ t \) is a value or else \(t \to t' \) for some \(T' \).

Progress: \(\lambda \ x . \ t \) closed, well-typed term is not stuck.
Typing rules again (for reference)

Lemma

Canonical Forms

1. If a is a value of type \(\text{Bool} \), then \(a \) is either \(\text{true} \) or \(\text{false} \).

2. If \(v \) is a value of type \(T_1 \rightarrow T_2 \), then \(v \) has the form \(x : T_1 . t_2 \).
Lemma: 1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type $T_1 \Rightarrow T_2$, then v is either $\text{true} \Rightarrow T_2$ or false.

Theorem: Suppose t is a closed, well-typed term (that is, $t: T$ for some T).

Then either t is a value or else there is some t_0 with $t \not= t_0$.

Proof: By induction on typing derivations.

The cases for boolean constants and conditions are the same as before.

The variable case is trivial (because t is closed).

The abstraction case is immediate, since abstractions are values.

Consider the case for application, where $t = t_1 t_2$ with $t_1: T_{11} \Rightarrow T_{12}$ and $t_2: T_{11}$.

By the induction hypothesis, either t_1 is a value or else it can make a step of evaluation, and likewise t_2.

If t_1 cannot take a step, then rule $E-\text{App1}$ applies to t.

If t_1 is a value and t_2 cannot take a step, then rule $E-\text{App2}$ applies.

Finally, if both t_1 and t_2 are values, then the canonical forms lemma tells us that t_1 has the form $x: T_{11}.t_{12}$, and so rule $E-\text{AppAbs}$ applies to t.

What if t weren't closed?
tells us that if \(t \) has the form \(\lambda \mathbf{x}.t_1.t_2 \), and so the \(E \)-\(\Pi \) rules apply to \(t \).

Consider the abstractions case. Since abstractions are values.

Theorem: Suppose \(t \) is a closed, well-typed term (that is, \(\Gamma \vdash t : T \) for some \(T \)).

\[\begin{array}{c}
\vdash \quad \vdash T_1.T_2 \\
t \cdot \vdash T_1 \\
\end{array} \]

Consider the \(\Pi \)-case for application, where \(t = t_1.t_2 \) with \(\Gamma \vdash t_1 : T_1 \) and \(\Gamma \vdash t_2 : T_2 \). The \(\Pi \) case is trivial (because \(\mathbf{e} \) is closed).

By induction on \(\Pi \)-typing. The case for boolean constants and conditions are the same as before.

The \(\Pi \) case is trivial (because \(\mathbf{e} \) is closed). The \(\Pi \) case is immediate since abstractions are values.

Proof: Induction on \(\Pi \)-typing. The case for boolean constants and conditions are the same as before.

The \(\Pi \) case is trivial (because \(\mathbf{e} \) is closed).

By induction on \(\Pi \)-typing. The case for boolean constants and conditions are the same as before.

The \(\Pi \) case is trivial (because \(\mathbf{e} \) is closed).

By induction on \(\Pi \)-typing. The case for boolean constants and conditions are the same as before.

The \(\Pi \) case is trivial (because \(\mathbf{e} \) is closed).
Progress

Theorem: Suppose \(t \) is a closed, well-typed term (that is, \(\Gamma \vdash t : T \) for some \(T \)).

Then either \(t \) is a value or else \(t \) is some \(\lambda x : T_1. t' \) with \(\Gamma \vdash t : T_1 \).

Proof: Suppose \(t \) is a closed, well-typed term (that is, \(\Gamma \vdash t : T \) for some \(T \)).

Proving Preservation

Theorem: If \(\Gamma \vdash t : T \) and \(t \not\rightarrow t_0 \), then \(\Gamma \vdash t_0 : T \).

Proof: By induction on typing derivations.

\[\{ \text{Which case is the hard one?} \} \]

Case \(T \text{-App} \):

Given \(t = t_1 t_2 \) \(\Gamma \vdash t_1 : T_1 \not\rightarrow T_12 \) and \(\Gamma \vdash t_2 : T_1 \).

Show \(\Gamma \vdash t_0 : T_12 \).

By the inversion lemma for evaluation, there are three subcases...

Subcase: \(\Gamma \vdash t_1 : T_1 \) and \(t_2 \) is a value \(v \).

\[t_0 = \lambda x : T_11. t_12 \]

Uhoh.
The Substitution Lemma

Lemma: Types are preserved under substitution.

\[\text{If } \forall x:S. t : T \text{ and } \forall x:S. s : T, \text{ then } \forall x:S. \[x \mapsto s\] t : T. \]

Proof: By induction on typing derivations.

Subcase: \[t = \text{ a value } v \]

Subcase: \[t = \text{ App } \]

By the inversion lemma for evaluation, there are three subcases:

Subcase: \[t = \text{ App } \]

By induction on typing derivations, there are three subcases:

Subcase: \[t = \text{ App } \]

By induction on typing derivations.
The Substitution Lemma

Lemma: Types are preserved under substitution.

If \(x : S \) \(\vdash t : T \) and \(\vdash s : S \), then \(\vdash [x \leftarrow s] t : T \).

Proof: ...