Announcements

Homework 7 due today, due November 14.

Homework 6 due today.

No in class review.

Revisions this week will be review for midterm.

It will cover TAPL chapters 8-14 (except 12).

Midterm II is one week from Wednesday (November 16).

References

Another example

BoolArray = Ref (Nat ! Bool);
newarray = new_array ()
 : Unit .ref (
 n : Nat . false);
 : Unit ! BoolArray
lookup =
 a : BoolArray .
 n : Nat . (! a) n;
 : BoolArray ! Nat ! Bool
update =
 a : BoolArray .
 m : Nat .
 v : Bool .
 let oldf = (! a) m
 in
 a :=
 n : Nat .
 if equal m n then v else oldf n;
 let newf = (! a) n
 in
 a :=
 n : Nat .
 if equal m n then v else newf n;
 : BoolArray ! Red (Her ! Boot) ;

leta = newarray ()
print (lookup a 3);
update a 3 true;
lookup a 3

7 November
Fall 2005
Software Foundations
CIS 500
Evaluation

A term t_1 first evaluates in t_1 until it becomes a value...

(E-Deref)

\[
\begin{align*}
\frac{\pi \mid \lambda \leftarrow \pi \mid t_1}{\lambda = (\lambda)(\pi)}
\end{align*}
\]

A term t_1 first evaluates in t_1 until it becomes a value...

(E-Ref)

\[
\begin{align*}
\frac{\pi \mid \lambda \leftarrow \pi \mid t_1}{\pi \mid \lambda \leftarrow \pi \mid t_1}
\end{align*}
\]

...and then chooses (allocates) a fresh location l, augments the store with a binding from l to v_1, and returns l:

(E-RefV)

\[
\begin{align*}
\frac{\pi \mid \lambda \leftarrow \pi \mid t_1}{\pi \mid \lambda \leftarrow \pi \mid t_1}
\end{align*}
\]
Store Typings

Typing Locations

Q: What is the type of a location?
A: It depends on the store!
E.g., in the store $(l_1 \triangleright \text{unit}, l_2 \triangleright \text{unit})$, the term l_2 has type unit. But in the store $(l_1 \triangleright \text{unit}, l_2 \triangleright x : \text{unit})$, the term l_2 has type $\text{unit} \rightarrow \text{unit}$.

Typing Locations

Q: What is the type of a location?
A: It depends on the store!
E.g., in the store $(l_1 \triangleright \text{unit}, l_2 \triangleright \text{unit})$, the term l_2 has type unit. But in the store $(l_1 \triangleright \text{unit}, l_2 \triangleright x : \text{unit})$, the term l_2 has type $\text{unit} \rightarrow \text{unit}$.

Typing Locations

Q: What is the type of a location?
A: It depends on the store!
E.g., in the store $(l_1 \triangleright \text{unit}, l_2 \triangleright \text{unit})$, the term l_2 has type unit. But in the store $(l_1 \triangleright \text{unit}, l_2 \triangleright x : \text{unit})$, the term l_2 has type $\text{unit} \rightarrow \text{unit}$.
Problem

Now how big is the typing derivation for I_5?

\[I_5 \vdash x : \text{Nat} \]
\[I_5 \vdash \text{Nat} \]

But wait... it gets worse. Suppose:

\[I_5 \vdash x : \text{Nat} \]
\[I_5 \vdash \text{Nat} \]

However, this rule is not completely satisfactory. For one thing, it can make typing derivations very large.

\[I_5 \vdash x : \text{Nat} \]
\[I_5 \vdash \text{Nat} \]
Observation: The typing rules we have chosen for references guarantee that a given location in the store is always used to hold values of the same type. These intended types can be collected into a store typing — a partial function from locations to types. An example store typing would be

\[
\begin{align*}
&l_1 : \text{Ref T Nat} \\
&l_2 : \text{Ref T Nat} \\
&l_3 : \text{Ref T Nat} \\
&l_4 : \text{Ref T Nat} \\
&l_5 : \text{Ref T Nat} \\
\end{align*}
\]

A reasonable store typing would be

\[
\begin{align*}
&l_1 \mapsto \text{Nat} \\
&l_2 \mapsto \text{Nat} \\
&l_3 \mapsto \text{Nat} \\
&l_4 \mapsto \text{Nat} \\
&l_5 \mapsto \text{Nat} \\
\end{align*}
\]

From locations to types, these intended types can be collected into a store typing — a partial function. A reason store typing in the store is always used to hold values of the same type.
Q: Where do these store typings come from?
A: When we first typecheck a program, there will be no explicit locations, so we can use an empty store. Applying the "current store typing" we can observe the type of \(v \) and extend the current store typing.

\[
\text{if } t \vdash \mathcal{L} \text{ and } t \not\vdash \mathcal{L} \text{ then } \exists_1 \vdash \pi \rightarrow \pi, \pi \vdash \mathcal{L} \rightarrow \mathcal{L}.
\]

So, when a new location is created during evaluation, we can use an empty store typing. When we first typecheck a program, there will be no explicit locations, so: Where do these store typings come from?
A store σ is said to be well-typed with respect to a typing context Γ and a store σ if

$$\Gamma \vdash \sigma : \mathbb{X}$$

for some $\mathbb{X} : \mathbb{T}$ and $\Gamma \vdash \tau : \mathbb{X}$.

For some $\mathbb{X} : \mathbb{T}$ and $\Gamma \vdash \tau : \mathbb{X}$.

Substitution for stores:

If $\Gamma \vdash \sigma : \mathbb{X}$ and $\Gamma \vdash \tau : \mathbb{Y}$ then

$$\Gamma \vdash \sigma \tau : \mathbb{Y}$$

Weakening for stores:

If $\Gamma \vdash \sigma : \mathbb{X}$ and $\Gamma \vdash \tau : \mathbb{Z}$ then

$$\Gamma \vdash \sigma \tau : \mathbb{Z}$$

New lemmas for preservation:

Substitution for stores:

If $\Gamma \vdash \sigma : \mathbb{X}$ and $\Gamma \vdash \tau : \mathbb{Y}$ then

$$\Gamma \vdash \sigma \tau : \mathbb{Y}$$

Weakening for stores:

If $\Gamma \vdash \sigma : \mathbb{X}$ and $\Gamma \vdash \tau : \mathbb{Z}$ then

$$\Gamma \vdash \sigma \tau : \mathbb{Z}$$

A store σ is said to be well-typed with respect to a typing context Γ and
New lemmas for preservation

Substitution for stores:

If \(j \not\models t \) and \((l) = T \) and \(j \not\models v \), then

\[j \not\models [l \not\models v] \]

Weakening for stores:

If \(j \not\models t : T \) and \(0 \), then

\[j \not\models t : T \]

Safety

Suppose that \(j \not\models t : T \)

then either

1. \(t \) is a value, or else
2. for any store \(f' \) such that \(j \not\models f' \), there is some \(t \) and store \(f'' \) with

\[t \not\models f' \] \(J \not\models t \) and \(f'' \not\models \]

Suppose that \(J \not\models t \) \(F \) \(J \not\models t \) then either

1. \(t \) is a value, or else
2. for any store \(f' \) such that \(J \not\models f' \), there is some \(t \) and store \(f'' \) with

\[t \not\models f' \]

Why isn't \(\mathcal{F} \) required to be empty?

\[\mathcal{F} \]

Excluding for stores:

If \(J \not\models t : T \) and \(\not\models t \) and \(f' \not\models \]

Suppose that \(J \not\models t \) \(f' \not\models \)

1. \(t \) is a value, or else
2. for any store \(f' \) such that \(J \not\models f' \), there is some \(t \) and store \(f'' \) with

\[t \not\models f' \]

Why isn't \(\mathcal{F} \) required to be empty?

\[\mathcal{F} \]

Substitution for stores:

If \(J \not\models t \) \(\not\models t \) and \(f' \not\models \]

Suppose that \(J \not\models t \) \(f' \not\models \)

1. \(t \) is a value, or else
2. for any store \(f' \) such that \(J \not\models f' \), there is some \(t \) and store \(f'' \) with

\[t \not\models f' \]