Church encoding of lists

... will not be on the exam. :-)

Briefly, though, here's the intuition:

$c_4 = \lambda s. \lambda z. s (s (s (s z)))$

$[v_1; v_2; v_3; v_4] = \lambda s. \lambda z. s v_1 (s v_2 (s v_3 (s v_4 z)))$

Typing derivations

Exercise 9.2.2: Show (by drawing derivation trees) that the following terms have the indicated types:

1. $f: \text{Bool} \rightarrow \text{Bool} \vdash f \ (\text{if} \ false \ \text{then} \ true \ \text{else} \ false) : \text{Bool}$
2. $f: \text{Bool} \rightarrow \text{Bool} \vdash \lambda x: \text{Bool}. f \ (\text{if} \ x \ \text{then} \ false \ \text{else} \ x) : \text{Bool} \rightarrow \text{Bool}$
The two typing relations

Question: What is the relation between these two statements?
1. \(t : T \)
2. \(\vdash t : T \)

First answer: These two relations are completely different things.
- We are dealing with several different small programming languages, each with its own typing relation (between terms in that language and types in that language).
- For the simple language of numbers and booleans, typing is a binary relation between terms and types (\(t : T \)).
- For \(\lambda \)..., typing is a ternary relation between contexts, terms, and types (\(\Gamma \vdash t : T \)).
 (When the context is empty — because the term has no free variables — we often write \(\vdash t : T \) to mean \(\emptyset \vdash t : T \).)

Conservative extension

Second answer: The typing relation for \(\lambda \) conservatively extends the one for the simple language of numbers and booleans.

- Write “language 1” for the language of numbers and booleans and “language 2” for the simply typed lambda-calculus with base types \(\text{Nat} \) and \(\text{Bool} \).
- The terms of language 2 include all the terms of language 1; similarly typing rules.
- Write \(t :_1 T \) for the typing relation of language 1.
- Write \(\Gamma \vdash t :_2 T \) for the typing relation of language 2.
- Theorem: Language 2 conservatively extends language 1: If \(t \) is a term of language 1 (involving only booleans, conditions, numbers, and numeric operators) and \(T \) is a type of language 1 (either \(\text{Bool} \) or \(\text{Nat} \)), then \(t :_1 T \) iff \(\emptyset \vdash t :_2 T \).

Preservation (and Weakening, Permutation, Substitution)

The two typing relations

Question: What is the relation between these two statements?
1. \(t : T \)
2. \(\vdash t : T \)

Review: Proving progress

Let’s quickly review the steps in the proof of the progress theorem:
- inversion lemma for typing relation
- canonical forms lemma
- progress theorem

Inversion

Lemma:
1. If \(\Gamma \vdash \text{true} : R \), then \(R = \text{Bool} \).
2. If \(\Gamma \vdash \text{false} : R \), then \(R = \text{Bool} \).
3. If \(\Gamma \vdash \text{if} \ t_1 \ \text{then} \ t_2 \ \text{else} \ t_3 : R \), then \(\Gamma \vdash t_1 : \text{Bool} \) and \(\Gamma \vdash t_2, t_3 : R \).
4. If \(\Gamma \vdash x : R \), then
Theorem: Suppose \(t \) is a closed, well-typed term (that is, \(\vdash t : T \) for some \(T \)). Then either \(t \) is a value or else there is some \(t' \) with \(t \rightarrow t' \).
Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Steps of proof:
- Weakening
- Permutation
- Substitution preserves types
- Reduction preserves types (i.e., preservation)

Weakening and Permutation

Weakening tells us that we can add assumptions to the context without losing any true typing statements.

Lemma: If $\Gamma \vdash t : T$ and $x \notin \text{dom}(\Gamma)$, then $\Gamma, x:S \vdash t : T$.

Moreover, the latter derivation has the same depth as the former.

Permutation tells us that the order of assumptions in (the list) Γ does not matter.

Lemma: If $\Gamma \vdash t : T$ and Δ is a permutation of Γ, then $\Delta \vdash t : T$.

Moreover, the latter derivation has the same depth as the former.

Preservation

Theorem: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: By induction

Which case is the hard one??

Uh oh. What do we need to know to make this case go through??
Preservation

Theorem: If \(\Gamma \vdash t : T \) and \(t \longrightarrow t' \), then \(\Gamma \vdash t' : T \).

Proof: By induction on typing derivations.

Case T-App: Given \(t = t_1 \; t_2 \)
\(\Gamma \vdash t_1 : T_1 \rightarrow T_{12} \)
\(\Gamma \vdash t_2 : T_{11} \)
\(T = T_{12} \)

Show \(\Gamma \vdash t' : T_{12} \)

By the inversion lemma for evaluation, there are three subcases...

Subcase: \(t_1 = \lambda x : T_{11} \cdot t_{12} \)
\(t_2 \) a value \(v_2 \)
\(t' = [x \mapsto v_2] t_{12} \)

Uh oh. What do we need to know to make this case go through??

Preservation

Theorem: If \(\Gamma \vdash t : T \) and \(t \longrightarrow t' \), then \(\Gamma \vdash t' : T \).

Proof: By induction on typing derivations.

Case T-App: Given \(t = t_1 \; t_2 \)
\(\Gamma \vdash t_1 : T_1 \rightarrow T_{12} \)
\(\Gamma \vdash t_2 : T_{11} \)
\(T = T_{12} \)

Show \(\Gamma \vdash t' : T_{12} \)

By the inversion lemma for evaluation, there are three subcases...

Subcase: \(t_1 = \lambda x : T_{11} \cdot t_{12} \)
\(t_2 \) a value \(v_2 \)
\(t' = [x \mapsto v_2] t_{12} \)

Uh oh.

Preservation

The “Substitution Lemma”

Lemma: If \(\Gamma, x : S \vdash t : T \) and \(\Gamma \vdash s : S \), then \(\Gamma \vdash [x \mapsto s] t : T \).

I.e., “Types are preserved under substitution.”

Preservation

Theorem: If \(\Gamma \vdash t : T \) and \(t \longrightarrow t' \), then \(\Gamma \vdash t' : T \).

Proof: By induction on typing derivations.

Case T-App: Given \(t = t_1 \; t_2 \)
\(\Gamma \vdash t_1 : T_1 \rightarrow T_{12} \)
\(\Gamma \vdash t_2 : T_{11} \)
\(T = T_{12} \)

Show \(\Gamma \vdash t' : T_{12} \)

By the inversion lemma for evaluation, there are three subcases...

Subcase: \(t_1 = \lambda x : T_{11} \cdot t_{12} \)
\(t_2 \) a value \(v_2 \)
\(t' = [x \mapsto v_2] t_{12} \)

Uh oh. What do we need to know to make this case go through??
The “Substitution Lemma”

Lemma: If \(\Gamma, x : S \vdash T \) and \(\Gamma \vdash s : S \), then \(\Gamma \vdash [x \mapsto s]t : T \).

Proof: By induction on the depth of a derivation of \(\Gamma, x : S \vdash T \). Proceed by cases on the final typing rule used in the derivation.

Case T-App:
\[
\begin{align*}
t &= t_1 \quad t_2 \\
\Gamma, x : S &\vdash t_1 : T_2 \rightarrow T_1 \\
\Gamma, x : S &\vdash t_2 : T_2 \\
T &= T_1
\end{align*}
\]

By the induction hypothesis, \(\Gamma \vdash [x \mapsto s]t_1 : T_2 \rightarrow T_1 \) and \(\Gamma \vdash [x \mapsto s]t_2 : T_2 \). By T-App, \(\Gamma \vdash [x \mapsto s]t_1 \rightarrow [x \mapsto s]t_2 : T, \) i.e., \(\Gamma \vdash [x \mapsto s](t_1 \rightarrow t_2) : T \).

Case T-Var: \(t = z \) with \(z : T \in (\Gamma, x : S) \)

There are two sub-cases to consider, depending on whether \(z \) is \(x \) or another variable. If \(z = x \), then \([x \mapsto s]z = s \). The required result is then \(\Gamma \vdash s : S \), which is among the assumptions of the lemma. Otherwise, \([x \mapsto s]z = z \), and the desired result is immediate.

The “Substitution Lemma”

Lemma: If \(\Gamma, x : S \vdash T \) and \(\Gamma \vdash s : S \), then \(\Gamma \vdash [x \mapsto s]t : T \).

Proof: By induction on the depth of a derivation of \(\Gamma, x : S \vdash T \). Proceed by cases on the final typing rule used in the derivation.

Case T-Abs:
\[
\begin{align*}
t &= \lambda y : T_2 . t_1 \\
\Gamma, x : S, y : T_2 &\vdash t_1 : T_1
\end{align*}
\]

By our conventions on choice of bound variable names, we may assume \(x \neq y \) and \(y \notin \text{FV}(s) \). Using permutation on the given subderivation, we obtain \(\Gamma, y : T_2, x : S \vdash t_1 : T_1 \). Using weakening on the other given derivation (\(\Gamma \vdash s : S \)), we obtain \(\Gamma, y : T_2 \vdash s : S \). Now, by the induction hypothesis, \(\Gamma, y : T_2 \vdash [x \mapsto s]t_1 : T_1 \). By T-Abs, \(\Gamma \vdash \lambda y : T_2 . [x \mapsto s]t_1 : T_2 \rightarrow T_1 \), i.e. (by the definition of substitution), \(\Gamma \vdash [x \mapsto s](\lambda y : T_2 . t_1) : T_2 \rightarrow T_1 \).