Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule can be “read from bottom to top” in a straightforward way.

\[\Gamma \vdash t_1 : T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2 : T_{11} \]
\[\Gamma \vdash t_1 t_2 : T_{12} \quad (T\text{-App}) \]

If we are given some \(\Gamma \) and some \(t \) of the form \(t_1 \ t_2 \), we can try to find a type for \(t \) by

1. finding (recursively) a type for \(t_1 \)
2. checking that it has the form \(T_{11} \rightarrow T_{12} \)
3. finding (recursively) a type for \(t_2 \)
4. checking that it is the same as \(T_{11} \)

Syntax-directed sets of rules

The second important point about the simply typed lambda-calculus is that the set of typing rules is syntax-directed, in the sense that, for every “input” \(\Gamma \) and \(t \), there is one rule that can be used to derive typing statements involving \(t \).

E.g., if \(t \) is an application, then we must proceed by trying to use \(T\text{-App} \). If we succeed, then we have found a type (indeed, the unique type) for \(t \). If it fails, then we know that \(t \) is not typable.

\[\Gamma \vdash t : S \quad S <: T \]
\[\Gamma \vdash t : T \quad (T\text{-Sub}) \]

Non-syntax-directedness of typing

When we extend the system with subtyping, both aspects of syntax-directedness get broken.

1. The set of typing rules now includes two rules that can be used to give a type to terms of a given shape (the old one plus \(T\text{-Sub} \))

\[\Gamma \vdash t : S \quad S <: T \]
\[\Gamma \vdash t : T \quad (T\text{-Sub}) \]

2. Worse yet, the new rule \(T\text{-Sub} \) itself is not syntax directed: the inputs to the left-hand subgoal are exactly the same as the inputs to the main goal!
(If we translated the typing rules naively into a typechecking function, the case corresponding to \(T\text{-Sub} \) would cause divergence.)
Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either.

1. There are lots of ways to derive a given subtyping statement.
2. The transitivity rule

 \[\frac{S < U \quad U < T}{S < T} \]

 (S-Trans)

 is badly non-syntax-directed: the premises contain a metavariable (in an “input position”) that does not appear at all in the conclusion.

 To implement this rule naively, we’d have to guess a value for \(U \).

What to do?

1. Observation: We don’t need 1000 ways to prove a given typing or subtyping statement — one is enough.
 □ → Think more carefully about the typing and subtyping systems to see where we can get rid of excess flexibility
2. Use the resulting intuitions to formulate new “algorithmic” (i.e., syntax-directed) typing and subtyping relations
3. Prove that the algorithmic relations are “the same as” the original ones in an appropriate sense.

Developing an algorithmic subtyping relation

Subtype relation

\[S <: S \quad \text{(S-Refl)} \]
\[S <: U \quad U <: T \quad S <: T \quad \text{(S-Trans)} \]
\[\{l_i : T_i \mid i \in 1..n+k\} <: \{l_i : T_i \mid i \in 1..n\} \quad \text{(S-RcdWidth)} \]

for each \(i \) \(S_i <: T_i \)
\[\{k_j : S_j \mid j \in 1..n\} \text{ is a permutation of } \{l_i : T_i \mid i \in 1..n\} \quad \text{(S-RcdPerm)} \]
\[T_1 <: S_1 \quad S_2 <: T_2 \]
\[S_1 => S_2 <: T_1 => T_2 \quad \text{(S-Arrow)} \]
\[S <: \text{Top} \quad \text{(S-Top)} \]

Issues

For a given subtyping statement, there are multiple rules that could be used last in a derivation.

1. The conclusions of S-RcdWidth, S-RcdDepth, and S-RcdPerm overlap with each other.
2. S-Refl and S-Trans overlap with every other rule.
Step 1: simplify record subtyping

Idea: combine all three record subtyping rules into one “macro rule” that captures all of their effects

\[
\{l_i : S_i \mid i \in 1..n\} \subseteq \{k_j : T_j \mid j \in 1..m\} \quad k_j = l_i \implies S_j <: T_i
\]

\[
\{k_j : S_j \mid j \in 1..m\} <: \{l_i : T_i \mid i \in 1..n\} \quad \text{(S-Rcd)}
\]

Step 2: Get rid of reflexivity

Observation: S-Refl is unnecessary.

Lemma: $S <: S$ can be derived for every type S without using S-Refl.

Step 3: Get rid of transitivity

Observation: S-Trans is unnecessary.

Lemma: If $S <: T$ can be derived, then it can be derived without using S-Trans.

Simpler subtype relation

\[
S <: S \quad \text{(S-Refl)}
\]

\[
S <: U \quad U <: T \quad \text{(S-Trans)}
\]

\[
\{l_i : S_i \mid i \in 1..n\} \subseteq \{k_j : T_j \mid j \in 1..m\} \quad k_j = l_i \implies S_j <: T_i
\]

\[
\{k_j : S_j \mid j \in 1..m\} <: \{l_i : T_i \mid i \in 1..n\} \quad \text{(S-Rcd)}
\]

\[
T_1 <: S_1 \quad S_2 <: T_2
\]

\[
S_1 \rightarrow S_2 <: T_1 \rightarrow T_2 \quad \text{(S-Arrow)}
\]

\[
S <: \text{Top} \quad \text{(S-Top)}
\]

Even simpler subtype relation

\[
S <: U \quad U <: T \quad \text{(S-Trans)}
\]

\[
\{l_i : S_i \mid i \in 1..n\} \subseteq \{k_j : T_j \mid j \in 1..m\} \quad k_j = l_i \implies S_j <: T_i
\]

\[
\{k_j : S_j \mid j \in 1..m\} <: \{l_i : T_i \mid i \in 1..n\} \quad \text{(S-Rcd)}
\]

\[
T_1 <: S_1 \quad S_2 <: T_2
\]

\[
S_1 \rightarrow S_2 <: T_1 \rightarrow T_2 \quad \text{(S-Arrow)}
\]

\[
S <: \text{Top} \quad \text{(S-Top)}
\]

“Algorithmic” subtype relation

\[
\therefore S <: \text{Top} \quad \text{(SA-Top)}
\]

\[
\therefore T_1 <: S_1 \quad \therefore S_2 <: T_2
\]

\[
\therefore S_1 \rightarrow S_2 <: T_1 \rightarrow T_2 \quad \text{(SA-Arrow)}
\]

\[
\therefore \{l_i : S_i \mid i \in 1..n\} \subseteq \{k_j : T_j \mid j \in 1..m\} \quad \text{for each } k_j = l_i, \therefore S_j <: T_i
\]

\[
\therefore \{k_j : S_j \mid j \in 1..m\} <: \{l_i : T_i \mid i \in 1..n\} \quad \text{(SA-Rcd)}
\]
Soundness and completeness

Theorem: \(S \triangleleft T \) iff \(S \triangleleft T \).

Proof: (Homework)

Terminology:

- The algorithmic presentation of subtyping is *sound* with respect to the original if \(\triangleright S \triangleleft T \) implies \(S \triangleleft T \). (Everything validated by the algorithm is actually true.)
- The algorithmic presentation of subtyping is *complete* with respect to the original if \(S \triangleleft T \) implies \(\triangleright S \triangleleft T \). (Everything true is validated by the algorithm.)

Subtyping Algorithm (pseudo-code)

The algorithmic rules can be translated directly into code:

\[
\text{subtype}(S, T) =
\begin{cases}
 \text{true} & \text{if } T = \text{Top} \\
 \text{false} & \text{else}
\end{cases}
\]

\(S \subseteq T \) if
\(S \triangleleft T \) for all \(u \) and \(j \)
\(\text{subtype}(u, j) \text{ iff } u \triangleleft T \)
\(S = T \) if \(\text{subtype}(S, T) \text{ and } T = \text{subtype}(T, S) \)
\(S \subseteq T \text{ and } \text{subtype}(S, T) \text{ for all } i \in [1..n] \) there is some \(j \in [1..m] \) with \(k_j = 1 \) and \(\text{subtype}(S_j, T_i) \)

else \text{false}.

Decision Procedures

Recall: A *decision procedure* for a relation \(R \subseteq U \) is a total function \(p \) from \(U \) to \(\{\text{true, false}\} \) such that \(p(u) = \text{true} \) iff \(u \in R \).

Is our *subtype* function a decision procedure?

Since *subtype* is just an implementation of the algorithmic subtyping rules, we have

1. if \(\text{subtype}(S, T) = \text{true} \), then \(\triangleright S \triangleleft T \)
 (hence, by soundness of the algorithmic rules, \(S \triangleleft T \))
2. if \(\text{subtype}(S, T) = \text{false} \), then not \(\triangleright S \triangleleft T \)
 (hence, by completeness of the algorithmic rules, not \(S \triangleleft T \))

Q: What’s missing?
Recall: A decision procedure for a relation $R \subseteq U$ is a total function p from U to \{true, false\} such that $p(u) = true$ iff $u \in R$.

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic subtyping rules, we have

1. if $\text{subtype}(S, T) = true$, then $\vdash S <: T$
 (hence, by soundness of the algorithmic rules, $S <: T$)
2. if $\text{subtype}(S, T) = false$, then not $\vdash S <: T$
 (hence, by completeness of the algorithmic rules, not $S <: T$)

Q: What’s missing?
A: How do we know that subtype is a total function?

Prove it!

For the typing relation, we have just one problematic rule to deal with: subsumption.

$$
\frac{\Gamma \vdash t : S \quad S <: T}{\Gamma \vdash t : T} \quad \text{(T-Sub)}
$$

Where is this rule really needed?

For applications. E.g., the term

$$(\lambda r : \{x : \text{Nat}. \ x \} \{x=0, y=1\})$$

is not typable without using subsumption.

Where else??
For the typing relation, we have just one problematic rule to deal with: subsumption.

\[\Gamma \vdash t : S \quad S <: T \]
\[\Gamma \vdash t : T \]

(T-Sub)

Where is this rule really needed?
For applications. E.g., the term

\((\lambda r : \{x : \text{Nat}\}. r.x) \{x = 0, y = 1\}\)

is not typable without using subsumption.

Where else??
Nowhere else! Uses of subsumption to help typecheck applications are the only interesting ones.
Example (T-App on the right)

\[
\begin{align*}
\Gamma \vdash s_1 : T_{11} \rightarrow T_{12} & \quad \Gamma \vdash s_2 : T_{11} \\
\Gamma \vdash s_1 \ s_2 : T_{12} &
\end{align*}
\]

Example (T-Sub)

\[
\begin{align*}
\Gamma \vdash s : S & \quad S \subset U \\
\Gamma \vdash s : U & \quad U \subset T \\
\Gamma \vdash s : T &
\end{align*}
\]

Example (T-App)

\[
\begin{align*}
\Gamma \vdash s_1 : T_{11} \rightarrow T_{12} & \quad \Gamma \vdash s_2 : T_{11} \\
\Gamma \vdash s_1 \ s_2 : T_{12} &
\end{align*}
\]

Example (T-Sub)

\[
\begin{align*}
\Gamma \vdash s : S & \quad S \subset U \\
\Gamma \vdash s : U & \quad U \subset T \\
\Gamma \vdash s : T &
\end{align*}
\]

\[
\begin{align*}
\Gamma \vdash s_1 : T_{11} \rightarrow T_{12} & \quad \Gamma \vdash s_2 : T_{11} \\
\Gamma \vdash s_1 \ s_2 : T_{12} &
\end{align*}
\]