1. (5 points) Consider the following Coq function:

\[
\text{Fixpoint concatMap (X Y : Set) (f : X \to \text{list} Y) (l : \text{list} X)\{\text{struct}\ l\} : \text{list} Y :=}
\begin{align*}
\text{match } l &\text{ with} \\
| \text{nil} &\Rightarrow \text{nil} \\
| h :: t &\Rightarrow (f h) ++ (\text{concatMap } _ _ f t) \\
\text{end.}
\end{align*}
\]

(a) What is the type of \text{concatMap}? (I.e., what does \text{Check concatMap print}?)
\text{Answer: } \text{concatMap : forall X Y : Set, (X \to \text{list} Y) \to \text{list} X \to \text{list} Y}

(b) What does \text{Eval simpl in (concatMap _ _ (fun x => x) [[1,2],[3,4]])}. print?
\text{Answer: } \text{[1, 2, 3, 4] : list nat}

(c) What does \text{Eval simpl in (concatMap _ _ (fun x => [x+1,x+2]) ([1,2])}. print?
\text{Answer: } \text{[2, 3, 3, 4] : list nat}

\text{Grading scheme: -2 for each incorrect part}

2. (5 points)

(a) Fill in the definition of the Coq function \text{elem} below.
Given a type \text{X}, an equality-testing function \text{eq} for \text{X}, an element \text{e} of type \text{X}, and a list \text{l} of type \text{list X}, the expression \text{elem X eq e l} returns \text{true} if and only an element \text{eq}-equal to \text{e} appears in the list. For example, \text{elem nat beq_nat 2 [1,2,3]} yields \text{true} (because \text{beq_nat 2 2 = true}) while \text{elem nat beq_nat 5 [1,2,3]} yields \text{false}.

\text{Fixpoint elem (X : Set) (eq : X \to X \to \text{bool}) (e : X) (l : list X)\{\text{struct}\ l\} : \text{bool :=}
\begin{align*}
\text{match } l &\text{ with} \\
| \text{nil} &\Rightarrow \text{false} \\
| h :: t &\Rightarrow \text{orb (eq e h) (elem _ eq e t)} \\
\text{end.}
\end{align*}

\text{Answer:}
\begin{align*}
\text{match } l &\text{ with} \\
| \text{nil} &\Rightarrow \text{false} \\
| h :: t &\Rightarrow \text{orb (eq e h) (elem _ eq e t)} \\
\text{end.}
\end{align*}

\text{Grading scheme: -1 or -2 for various errors (hardly anyone missed this)}
(b) Why do we need to pass an equality-testing function \(\text{eq} \) as an argument to \(\text{elem} \) instead of just using \(= \) to test for equality?

Answer: \(= \) yields a proposition, not a boolean

Grading scheme: -2 for failing to say something close to “\(= \) yields a proposition, not a boolean”. Note that “because \(= \) is not polymorphic” (or words to that effect) is incorrect: \(= \) is polymorphic.

3. (6 points) Fill in the definition of the Coq function \(\text{nub} \) below.

Given a type \(X \), an equality function \(\text{eq} \) for \(X \), and a list \(l \) of type \(\text{list}\ X \), the expression \(\text{nub}
\ X \ \text{eq}
\ l \) yields a list that retains only the last copy of each element in the input list. For example, \(\text{nub}
\ \text{nat}
\ \text{beq_nat}
\ [1,2,1,3,2,2,4] \) yields \([1,3,2,4] \).

Fixpoint nub (X : Set) (eq : X \rightarrow X \rightarrow bool) (l : list X) {struct l} : list X :=

Answer:

\[
\begin{align*}
\text{match } l \text{ with } \\
| \text{nil} & \Rightarrow \text{nil} \\
| h :: t & \Rightarrow \begin{cases} \\
\text{if } \text{elem } h \ \text{t} \text{ then } \text{nub } h \ \text{t} \\
\text{else } h :: \text{nub } h \ \text{t} \\
\end{cases}
\end{align*}
\]

end.

Grading scheme: -1 to -5 for various errors (few people missed this question).

4. (5 points)

(a) Briefly explain the use and behavior of the \(\text{apply} \) tactic.

Answer: The \(\text{apply} \) tactic is used with a hypothesis from the current context or a previously defined theorem. If the conclusion of that hypothesis or theorem matches the current goal, it is eliminated and new subgoals are generated for each premise of the applied theorem. In this way, \(\text{apply} \) facilitates “backwards” reasoning.

(b) Briefly explain the use and behavior of the \(\text{apply } ... \text{ in } ... \) tactic.

Answer: \(\text{apply } \text{H1 in H2} \) may be used when \(\text{H2} \) is a hypothesis in the current context. \(\text{H1} \) should be another hypothesis or a previously defined theorem, and a premise of \(\text{H1} \) must match \(\text{H2} \). Using the tactic transforms \(\text{H2} \) into the conclusion of \(\text{H1} \), and new subgoals are generated for each additional premise of \(\text{H1} \). \(\text{apply } ... \text{ in } ... \) facilitates forward reasoning.

Grading scheme: There was significant variation in this problem. Many errors other than the ones mentioned here are individually indicated. Common errors include: -1 point for not being general enough (suggesting \(\text{apply/apply in only work when the applied hypothesis has exactly one premise} \)); -2 points for saying that \(\text{apply H1 in H2 provides n new assumptions where H1 has the form H2 \rightarrow P1 \rightarrow P2 ... \rightarrow Pn} \); -1 point for saying \(\text{apply...in... can be used to modify both assumptions and the goal} \).

5. (6 points) Recall the Coq function \(\text{repeat} \):

Fixpoint repeat (X : Set) (n : X) (count : nat) {struct count} : list X :=

match count with
| 0 => nil
| S count' => cons n (repeat _ n count')
end.

Consider the following partial proof:
Lemma repeat_injective : forall (X : Set) (x : X) (n m : nat),
repeat _ x n = repeat _ x m →
n = m.
Proof.
intros X x n m eq. induction n as [\[|n\]'].
Case "n = 0". destruct m as [\[|m\]'].
SCase "m = 0". reflexivity.
SCase "m = S m'". inversion eq.
Case "n = S n'". destruct m as [\[|m\]'].
SCase "m = 0". inversion eq.
SCase "m = S m'".
assert (n' = m') as H.
SSCase "Proof of assertion".

Here is what the "goals" display looks like after Coq has processed this much of the proof:

2 subgoals
SSCase := "Proof of assertion" : String.string
SCase := "m = S m'" : String.string
Case := "n = S n'" : String.string
X : Set
x : X
n' : nat
m' : nat
eq : repeat X x (S n') = repeat X x (S m')
IHm' : repeat X x n' = repeat X x (S m') → n' = S m'

Subgoal 2 is:
S n' = S m'

This proof attempt is not going to succeed. Briefly explain why and say how it can be fixed. (Do not write the repaired proof in detail—just say briefly what needs to be changed to make it work.)

Answer: Because the induction hypothesis is insufficiently general. It gives us a fact involving one particular m, but to finish the last step of the proof we need to know something about a different m. To fix it, either use generalize dependent m before induction or do not intros m and eq to begin with.

Grading scheme: 3 points for identifying the problem, and 3 for explaining out to fix it. -2 points for not mentioning that the problem involves the IH. -1 point for being vague about nature of the problem (at least, it should be made clear that the IH is too specific).

6. (5 points) Suppose we make the following inductive definition:

Inductive foo (X : Set) (Y : Set) : Set :=
| foo1 : X → foo X Y
| foo2 : Y → foo X Y
| foo3 : foo X Y → foo X Y.

Fill in the blanks to complete the induction principle that will be generated by Coq.

foo_ind
 : forall (X Y : Set) (P : foo X Y → Prop),
(foreall x : X, __________________________) →
(forall y : Y, __________________________________)

(forall x : X, P (foo1 X Y x)) →
(forall y : Y, P (foo2 X Y y)) →
(forall f1 : foo X Y, P f1 → P (foo3 X Y f1)) →
forall f2 : foo X Y, P f2

Answer:

foo_ind

: forall (X Y : Set) (P : foo X Y → Prop),
(forall x : X, P (foo1 X Y x)) →
(forall y : Y, P (foo2 X Y y)) →
(forall f1 : foo X Y, P f1 → P (foo3 X Y f1)) →
forall f2 : foo X Y, P f2

Grading scheme: -1 point for missing forgetting the type arguments to foo’s constructors. -2 points per line for other significant errors.

7. (6 points)
Consider the following induction principle:

bar_ind

: forall P : bar → Prop,
(forall n : nat, P (bar1 n)) →
(forall b : bar, P b → P (bar2 b)) →
(forall (b : bool) (b0 : bar), P b0 → P (bar3 b b0)) →
forall b : bar, P b

Write out the corresponding inductive set definition.

Inductive bar : Set :=

| bar1 : __
| bar2 : __
| bar3 : __.

Answer:

Inductive bar : Set :=

| bar1 : nat → bar
| bar2 : bar → bar
| bar3 : bool → bar → bar.

Grading scheme: Binary grading, 2pts per part.

8. (6 points) Suppose we give Coq the following definition:

Inductive R : nat → list nat → Prop :=

| c1 : R 0 []
| c2 : forall n 1, R n 1 → R (S n) (n :: l)
| c3 : forall n l, R (S n) 1 → R n l.

Which of the following propositions are provable? (Write yes or no next to each one.)

(a) R 2 [1,0] Answer: Yes
(b) R 1 \[1,2,1,0\] \quad \text{Answer: Yes}

(c) R 6 \[3,2,1,0\] \quad \text{Answer: No}

Grading scheme: Binary grading, 2pts per part.

9. (6 points) The following inductively defined proposition...

\[
\text{Inductive appears\textunderscore in (X:Set) (a:X) : list X \rightarrow Prop := }
\]
\[
| \quad a\textunderscore i\textunderscore here : \forall l, \text{appears\textunderscore in X a (a::l)}
\]
\[
| \quad a\textunderscore i\textunderscore later : \forall b l, \text{appears\textunderscore in X a l} \rightarrow \text{appears\textunderscore in X a (b::l)}.
\]

...gives us a precise way of saying that a value a appears at least once as a member of a list l.

Use \text{appears\textunderscore in} to complete the following definition of the proposition \text{no\textunderscore repeats X l}, which should be provable exactly when l is a list (with elements of type X) where every member is different from every other. For example, \text{no\textunderscore repeats nat [1,2,3,4]} and \text{no\textunderscore repeats bool []} should be provable, while \text{no\textunderscore repeats nat [1,2,1]} and \text{no\textunderscore repeats bool [true,true]} should not be.

\[
\text{Inductive no\textunderscore repeats (X:Set) : list X \rightarrow Prop := }
\]

\[
| \quad \text{nr_nil : no\textunderscore repeats X nil}
\]

\[
| \quad \text{nr_cons : \forall a l, no\textunderscore repeats X l} \\
\quad \rightarrow \neg (\text{appears\textunderscore in X a l}) \\
\quad \rightarrow \text{no\textunderscore repeats X (a::l)}.
\]

Grading scheme: Credit is was split 2pts for the nil case, 4pts for the cons case. Common deductions: -2 for forgetting to negate the \text{appears\textunderscore in} predicate, -2 for forgetting inductive occurrence of \text{no\textunderscore repeats} in the cons case, -1 for ill-formed solutions.

10. (2 points) Complete the definition of and, as it is defined in Logic.v:

\[
\text{Inductive and (A B : Prop) : Prop :=}
\]

\[
| \quad \text{conj : A \rightarrow B \rightarrow (and A B)}.
\]

Grading scheme: 1 point for the constructor, 1 point for its type

11. (2 points) Complete the definition of or, as it is defined in Logic.v:

\[
\text{Inductive or (A B : Prop) : Prop :=}
\]

\[
| \quad \text{or_introl : A \rightarrow or A B}
\]

\[
| \quad \text{or_intror : B \rightarrow or A B}.
\]

Grading scheme: 1 point for the constructors, 1 point for their types

12. (6 points) Write an informal proof (in English) of the proposition \(\forall P : \text{Prop}, \neg (P \land \neg P) \).

Answer:

Suppose, for some P, that \((P \land \neg P)\) holds. Recall that \(\neg P\) is defined as \(P \rightarrow \text{False}\). Given P and \(P \rightarrow \text{False}\), we can prove \text{False}, i.e., \((P \land \neg P) \rightarrow \text{False}\), i.e., \(\neg (P \land \neg P)\). Grading scheme: +1 point for demonstrating knowledge of the definition of \(\neg\) or correctly beginning a proof by contradiction. +3 for correct proof outline. +1 point for being clear about assumptions. +1 point for being clear about the nature of the contradiction. -1 or -2 points for bad style / sounding too much like coq.
13. (4 points) Recall the nat-indexed proposition ev from Logic.v:

\[
\text{Inductive ev : nat \to Prop :=} \\
| \text{ev}_0 : ev 0 \\
| \text{ev}_\text{SS} : \forall n : \text{nat}, \ ev \ n \to ev (S (S n)).
\]

Complete the definition of the following proof object:

\[
\text{Definition ev_plus2 : \forall n, ev \ n \to ev (plus 2 n) :=}
\]

Answer:

\[
\text{fun (n : nat) =>} \\
\text{fun (E : ev n) =>} \\
\text{ev_SS n E.}
\]

Grading scheme: 1 point for ev_SS, 1 point for each function, 1 point for correct application of ev_SS

14. (6 points) Recall the definition of ex (existential quantification) from Logic.v:

\[
\text{Inductive ex (X : Set) (P : X \to Prop) : Prop :=} \\
| ex_\text{intro} : \forall \text{witness:X, P witness} \to ex X P.
\]

(a) In English, what does the proposition

\[
\text{ex \ nat (fun n => ev (S n))}
\]

mean?

Answer: There is some number whose successor is even.

Grading scheme: 3 points for correct answer, -1 for imprecise language, -1 for claims about "all nats?"

(b) Complete the definition of the following proof object:

\[
\text{Definition p : ex \ nat (fun n => ev (S n)) :=}
\]

Answer:

\[
\text{ex_intro nat (fun n => ev (S n)) 1 (ev_SS 0 ev_0).}
\]

Grading scheme: 1 point for ex_intro, 1 point for the proof witness ev_SS 0 ev_0 (or something equivalent, 1 point for correct application of ex_intro

15. (10 points) Recall the definition of the index function:

\[
\text{Fixpoint index (X : Set) (n : nat) (l : list X) {struct l} : option X :=} \\
| [] \Rightarrow \text{None} \\
| a :: l' \Rightarrow \text{if beq_nat n 0 then Some a else index _ (pred n) l'} \\
\text{end.}
\]

Write an informal proof of the following theorem:

\[
\forall X \ n \ l, \text{length} \ l = n \to \text{index} X (S n) l = \text{None.}
\]

Answer:

Let a set X and a list l be given. We will show, by induction on l, that length l = n implies index X (S n) l = None, for any natural number n. There are two cases to consider:

(a) If l = nil, we must show index (S n) [] = None. This follows immediately from the definition of index.
(b) Otherwise, $l = \text{cons } x :: l'$ for some x and l', where the induction hypothesis tells us that $\text{length } l' = n' \Rightarrow \text{index } (S\ n') \ l = \text{None}$ for any n'.

Let n be a number such that $\text{length } l = n$. We must show $\text{index } (S\ n) \ (x :: l') = \text{None}$. By the definition of index, it is enough to show $\text{index } n \ l' = \text{None}$.

But we know that $n = \text{length } l = \text{length } (x :: l') = S\ (\text{length } l')$. So it’s enough to show $\text{index } (S\ (\text{length } l')) \ l' = \text{None}$, which follows directly from the induction hypothesis, picking $\text{length } l'$ for n'.

\textit{Grading scheme: 6 points for general proof structure. Common Errors: -1 minor confusion about variables or quantification, -2 for style problems, -1 not explaining that n has form $S\ n'$ in the inductive step.}