This exam concentrates on the material on the Imp programming language, program equivalence, and Hoare Logic. Some of the key definitions are repeated, for easy reference, in the accompanying handout.

The version of Imp we consider in this exam only has arithmetic expressions that reduce to numbers; you don’t need to worry about lists.

1. (8 points) Indicate whether or not each of the following Hoare triples is valid by writing either “valid” or “invalid.” Also, for those that are invalid, give a counter-example. The definition of Hoare triples is given on page 9, for reference.

(a) \(\{\{ X = 2 \lor X = 3 \}\} \)
 \(\begin{align*}
 X &::= 5 \\
 \{\{ X = 0 \}\}
 \end{align*}\)
2. (12 points) Given the following programs, group together those that are equivalent in Imp by drawing boxes around their names. For example, if you think programs a through h are all equivalent to each other, but not to i, your answer should look like this: \[a, b, c, d, e, f, g, h \] \[i \].

The definition of program equivalence is repeated on page 9, for reference.

(a) \[
\text{WHILE } X > 0 \text{ DO}
\quad X ::= X + 1
\quad \text{END}
\]

(b) \[
\text{IF} \quad X = 0 \quad \text{THEN}
\quad X ::= X + 1;
\quad Y ::= 1
\quad \text{ELSE}
\quad Y ::= 0
\quad \text{FI};
\quad X ::= X - Y;
\quad Y ::= 0
\]

(c) \[
\text{SKIP}
\]

(d) \[
\text{WHILE } X <> 0 \text{ DO}
\quad X ::= X \ast Y + 1
\quad \text{END}
\]

(e) \[
Y ::= 0
\]

(f) \[
Y ::= X + 1;
\quad \text{WHILE } X <> Y \text{ DO}
\quad Y ::= X + 1
\quad \text{END}
\]

(g) \[
\text{WHILE } \text{BTrue} \text{ DO}
\quad \text{SKIP}
\quad \text{END}
\]

(h) \[
\text{WHILE } X <> X \text{ DO}
\quad X ::= X + 1
\quad \text{END}
\]

(i) \[
\text{WHILE } X <> Y \text{ DO}
\quad X ::= Y + 1
\quad \text{END}
\]

2
3. (20 points) Write a careful informal proof showing that if boolean expression b is equivalent to $BTrue$, then the command $\text{IFB } b \text{ THEN } c_1 \text{ ELSE } c_2 \text{ FI}$ is equivalent to c_1—i.e., formally:

$$\forall b \ c_1 \ c_2, \ bequiv \ b \ BTrue \rightarrow \ cequiv \ (\text{IFB } b \ \text{THEN } c_1 \ \text{ELSE } c_2 \ \text{FI}) \ c_1.$$

The definitions of $bequiv$ and $cequiv$ are given on page 9, for reference.
4. (16 points) The following Imp program calculates the sum of three numbers \(a\), \(b\), and \(c\).

\[
\begin{align*}
X &: = 0; \\
Y &: = 0; \\
Z &: = c; \\
\text{WHILE } X <> a \text{ DO} \\
& \quad X ::= X + 1; \\
& \quad Z ::= Z + 1 \\
\text{END;} \\
\text{WHILE } Y <> b \text{ DO} \\
& \quad Y ::= Y + 1; \\
& \quad Z ::= Z + 1 \\
\text{END}
\end{align*}
\]

Note that we're using informal notations as usual in Imp examples, for example writing this

\[
\text{WHILE } (X <> a)
\]

instead of this:

\[
\text{WHILE } (\text{BNot } (\text{BEq } (\text{AId } X) (\text{ANum } a)))
\]

On the next page, add appropriate annotations to the program in the provided spaces to show that the Hoare triple given by the outermost pre- and post-conditions is valid. Use informal notations for mathematical formulae and assertions, but please be completely precise and pedantic in the way you apply the Hoare rules — i.e., write out assertions in \textit{exactly} the form given by the rules (rather than logically equivalent ones). The provided blanks have been constructed so that, if you work backwards from the end of the program, you should only need to use the rule of consequence in the places indicated with \(\Rightarrow\).

The Hoare rules are provided on page 10, for reference.
X ::= 0;
Y ::= 0;
Z ::= c;

WHILE X <> a DO
 X ::= X + 1;
 Z ::= Z + 1
END;

WHILE Y <> b DO
 Y ::= Y + 1;
 Z ::= Z + 1
END

{{ True }} => {{ True }}
{{ }}
{{ X ::= 0; }}
{{ }}
{{ Y ::= 0; }}
{{ }}
{{ Z ::= c; }}
{{ }}
WHILE X <> a DO
 {{ }}
 {{ X ::= X + 1; }}
 {{ Z ::= Z + 1 }}
END;

WHILE Y <> b DO
 {{ }}
 {{ Y ::= Y + 1; }}
 {{ Z ::= Z + 1 }}
END

{{ Z = a + b + c }}
5. (12 points) In this exercise we consider extending Imp with “one-sided conditionals” of the form

\[\text{IF} \ b \ \text{THEN} \ c \ \text{FI} \]

where \(b \) is a boolean expression, and \(c \) is a command. If \(b \) evaluates to false, then \(\text{IF} \ b \ \text{THEN} \ c \ \text{FI} \) does nothing.

To formalize the extended language, we first add a clause to the definition of commands:

\[
\text{Inductive com : Type :=} \\
\quad \ldots \\
\quad \mid \text{CIf1 : bexp \to com \to com}.
\]

Notation "'IF' b 'THEN' c 'FI'" := (CIf1 b c) (at level 60).

(a) Refer to the definition of \text{ceval} (page 9) for the evaluation relation of Imp. What rule(s) must be added to this definition to formalize the behavior of \text{IF}1? Write out the additional rule(s) in formal Coq notation.

(b) Write a Hoare proof rule for one-sided conditionals. (For reference, the standard Hoare rules for Imp are provided on page 10.)

Try to come up with a rule that is both sound and as precise as possible. For full credit, make sure your rule can be used to prove the following valid Hoare triple:

\[
\{\{ \ X + Y = Z \ \} \} \\
\text{IF} 1 \ Y \ < > \ 0 \ \text{THEN} \\
\quad X ::= X + Y \\
\text{FI} \\
\{\{ \ X = Z \ \} \}
\]
6. (12 points) In this exercise we define an asymmetric variant of program equivalence we call program approximation. We say that program c_1 approximates program c_2 when, for each of the initial states for which c_1 terminates, c_2 also terminates and produces the same final state. Formally, program approximation is defined as follows:

\[
\text{Definition } \text{capprox} \ (c_1 \ c_2 : \text{com}) : \text{Prop} := \\
\forall (st \ st' : \text{state}), \\
(c_1 / st \ || \ st') \rightarrow (c_2 / st \ || \ st').
\]

For instance the program $c_1 = \text{WHILE X <> 0 DO X ::= X - 1 END}$ approximates $c_2 = X ::= 1$, but c_2 does not approximate c_1 since c_1 does not terminate when $X = 0$ but c_1 does. If two programs approximate each other in both directions, then they are equivalent.

(a) Find two programs, c_3 and c_4, such that neither approximates the other. Formally, the following two propositions should be provable: $\neg(\text{capprox } c_3 \ c_4)$ and $\neg(\text{capprox } c_4 \ c_3)$. Your programs should be short (3 lines max).

\[
c_3 =
\]

\[
c_4 =
\]

(b) Find a program c_{min} that approximates every other program. Formally, the proposition $\forall c', \text{capprox } c_{\text{min}} \ c'$ should be provable. (Again, 3 lines max.)

\[
c_{\text{min}} =
\]

(c) Find a non-trivial property that is preserved by program approximation (when going from left to right). Formally, your $zprop$ should satisfy the following condition:

\[
\forall c \ c', \ zprop \ c \rightarrow \text{capprox } c \ c' \rightarrow zprop \ c'
\]

Write $zprop$ using formal Coq notation. (The correct answer fits on one line.)

\[
\text{Definition } zprop \ c : \text{Prop} :=
\]
Formal definitions for Imp

Syntax

Inductive aexp : Type :=
| ANum : nat -> aexp
| AId : id -> aexp
| APlus : aexp -> aexp -> aexp
| AMinus : aexp -> aexp -> aexp
| AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com -> com.

Notation "'SKIP'" :=
CSkip.
Notation "l ' '::=' a" :=
(CAss l a) (at level 60).
Notation "c1 ; c2" :=
(CSeq c1 c2) (at level 80, right associativity).
Notation "'WHILE' b 'DO' c 'END'" :=
(CWhile b c) (at level 80, right associativity).
Notation "'IFB' e1 'THEN' e2 'ELSE' e3 'FI'" :=
(CIf e1 e2 e3) (at level 80, right associativity).
Evaluation relation

\[
\text{Inductive } \text{ceval} : \text{com} \to \text{state} \to \text{state} \to \text{Prop} :=
\]
\[\begin{align*}
| \text{E_Skip} : & \forall s, \\
& \text{SKIP} / s || s \\
| \text{E_Ass} : & \forall s a1 n X, \\
& \text{aeval} s a1 = n \to \\
& (X ::= a1) / s || (\text{update} s X n) \\
| \text{E_Seq} : & \forall c1 c2 s s' s'', \\
& c1 / s || s' \to \\
& c2 / s' || s'' \to \\
& (c1 \ ; \ c2) / s || s'' \\
| \text{E_IfTrue} : & \forall s s' b1 c1 c2, \\
& \text{beval} s b1 = \text{true} \to \\
& c1 / s || s' \to \\
& (\text{IFB} b1 \ \text{THEN} \ c1 \ \text{ELSE} \ c2 \ \text{FI}) / s || s' \\
| \text{E_IfFalse} : & \forall s s' b1 c1 c2, \\
& \text{beval} s b1 = \text{false} \to \\
& c2 / s || s' \to \\
& (\text{IFB} b1 \ \text{THEN} \ c1 \ \text{ELSE} \ c2 \ \text{FI}) / s || s' \\
| \text{E_WhileEnd} : & \forall b1 s c1, \\
& \text{beval} s b1 = \text{false} \to \\
& (\text{WHILE} b1 \ \text{DO} \ c1 \ \text{END}) / s || s \\
| \text{E_WhileLoop} : & \forall s s' s'' b1 c1, \\
& \text{beval} s b1 = \text{true} \to \\
& c1 / s || s' \to \\
& (\text{WHILE} b1 \ \text{DO} \ c1 \ \text{END}) / s' || s'' \to \\
& (\text{WHILE} b1 \ \text{DO} \ c1 \ \text{END}) / s || s''
\end{align*}
\]

where "c1 '/' st '||' st'" := (ceval c1 s st').

Program equivalence

\[
\text{Definition bequiv (b1 b2 : bexp) : Prop :=}
\]
\[\forall (s:\text{state}), \text{beval} s b1 = \text{beval} s b2.\]

\[
\text{Definition cequiv (c1 c2 : com) : Prop :=}
\]
\[\forall (s s' : \text{state}), \ (c1 / s || s') \leftrightarrow (c2 / s || s').\]

Hoare triples

\[
\text{Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=}
\]
\[\forall s s', c / s || s' \to P s \to Q s'.\]

\[
\text{Notation } "\{\{ P \} \ } c \ " \{\{ Q \}\}" := (\text{hoare_triple} P c Q)\]
Implication on assertions

Definition assert_implies (P Q: Assertion): Prop :=
 forall st, P st -> Q st.

Notation "P "--> Q" := (assert_implies P Q) (at level 80).

(Hoare logic rules)

\[
\begin{align*}
\frac{\{\text{assn_sub X a Q}\}}{\{X := a\}} & \quad (\text{hoare_asgn}) \\
\frac{\{P\}}{\{\text{SKIP}\}} & \quad (\text{hoare_skip}) \\
\frac{\{P\} c_1 \{Q\}}{\{Q\} c_2 \{R\}} & \quad (\text{hoare_seq}) \\
\frac{\{P \land b\} c_1 \{Q\}}{\{P \land \neg b\} c_2 \{Q\}} & \quad (\text{hoare_if}) \\
\frac{\{P \land b\} c \{P\}}{\{P\} \text{ WHILE b DO c END } \{P \land \neg b\}} & \quad (\text{hoare_while}) \\
\frac{\{P'\} c \{Q'\}}{P \leadsto P'} \\
\frac{Q' \leadsto Q}{\{P\} c \{Q\}} & \quad (\text{hoare_consequence}) \\
\frac{\{P'\} c \{Q\}}{P \leadsto P'} \\
\frac{\{P\} c \{Q\}}{\{P\} c \{Q\}} & \quad (\text{hoare_consequence_pre}) \\
\frac{\{P\} c \{Q'\}}{Q' \leadsto Q} \\
\frac{\{P\} c \{Q\}}{\{P\} c \{Q\}} & \quad (\text{hoare_consequence_post})
\end{align*}
\]