CIS 500 — Software Foundations

Final Exam

(Standard version)

December 13, 2013

Name: __

Pennkey (e.g. bcpierce): ______________________________________

Scores:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Total:</td>
<td>110</td>
</tr>
</tbody>
</table>
1. (12 points) Multiple Choice — Coq Programming
 Circle the correct answer. (Each question has one unique correct answer.)

 (a) What is the type of the Coq term: \((\text{fun } n:\text{nat} \Rightarrow n = 0)\)?

 i. \(\text{nat} \rightarrow \text{nat}\)

 ii. \(\text{Prop}\)

 iii. \(\text{nat} \rightarrow \text{Prop}\)

 iv. \(\text{forall } n:\text{nat}, \hspace{0.5em} n = 0\)

 v. ill typed

 (b) What is the type of the Coq term: \((\text{forall } n:\text{nat}, \hspace{0.5em} n = 0)\)?

 i. \(\text{nat} \rightarrow \text{nat}\)

 ii. \(\text{Prop}\)

 iii. \(\text{nat} \rightarrow \text{Prop}\)

 iv. \(\text{forall } n:\text{nat}, \hspace{0.5em} n = 0\)

 v. ill typed

 (c) What is the type of the Coq term: \((\text{fun } (P:\text{nat} \rightarrow \text{Prop}) (n:\text{nat}) (Q:P \hspace{0.5em} n) \Rightarrow Q)\)?

 i. \(\text{nat} \rightarrow \text{Prop} \rightarrow \text{nat} \rightarrow \text{Prop} \rightarrow \text{Prop}\)

 ii. \(\text{forall } (P : \text{nat} \rightarrow \text{Prop}), \hspace{0.5em} \text{nat} \rightarrow \text{Prop}\)

 iii. \(\text{nat} \rightarrow \text{Prop} \rightarrow (n:\text{nat} \rightarrow P \hspace{0.5em} n) \rightarrow Q\)

 iv. \(\text{forall } (P : \text{nat} \rightarrow \text{Prop}) (n : \text{nat}), \hspace{0.5em} P \hspace{0.5em} n -> P \hspace{0.5em} n\)

 v. ill typed

 (d) What is the type of the Coq term: \(((\text{fun } P:\text{Prop} \Rightarrow P) (3 = 4))\)

 i. \(\text{Prop}\)

 ii. \(\text{nat}\)

 iii. \(\text{nat} \rightarrow \text{Prop}\)

 iv. \(\text{Prop} \rightarrow \text{nat}\)

 v. ill typed
2. (16 points) Multiple Choice — Imp Equivalence
 Circle *all* correct answers. There may be zero or more than one. For reference, the definition of Imp, its evaluation semantics, and program equivalence (*cequiv*) start on page 14.

(a) Consider the Imp program:

```
IF X > 0 THEN
  WHILE X > 0 DO SKIP END
ELSE
  SKIP
FI
```

Which of the following are equivalent to it, according to *cequiv*?

i. WHILE X > 0 DO
ii. SKIP
iii. X ::= 0
iv. IF X > 1 THEN

```
WHILE X > 0 DO SKIP END
END
```

(b) Consider the Imp program:

```
X ::= 0;;
Y ::= X + 1;;
```

Which of the following are equivalent to it, according to *cequiv*?

i. Y ::= 1;;
ii. Y ::= 0;;
iii. Y ::= 1;;
iv. Y ::= 2;;

```
X ::= 0;;  
X ::= Y + 1;;
WHILE X <> 0 DO  
  X ::= X - 1  
  Y ::= Y - 1;;
END
```

(c) Consider an arbitrary Imp command *c*. Which of the following are equivalent to *c*, according to *cequiv*?

i. *c ;; c*
ii. X ::= 1;;
iii. IF X > 0 THEN

```
WHILE X > 0 DO  
  c
  c ;; X ::= X - 1
END
```

iv. IF X < 0 THEN

```
  c
  SKIP
ELSE SKIP FI
ELSE c FI
DONE
```

(d) Which of the following propositions are provable?

i. forall *c*, (exists st:state, *c / st || st*) -> *cequiv c SKIP*

ii. forall c1 c2 st1 st3,

```
((c1 ;; c2) / st1 || st3) -> (exists st2:state, c1 / st1 || st2 /\ c2 / st2 || st3).
```

iii. forall c1 c2, (*cequiv c1 c2*) -> (*cequiv (c1;;c2) (c2;;c1))

iv. forall *c*, (forall st, *c / st || st*) -> *cequiv c SKIP.*
3. (16 points) Hoare Logic

The following Imp program computes \(m \times n\), placing the answer into \(Z\).

\[
\{\{ \text{True} \}\}
X ::= 0 ;;
Z ::= 0 ;;
\textbf{WHILE} X \neq n \textbf{DO}
\quad Y ::= 0 ;;
\textbf{WHILE} Y \neq m \textbf{DO}
\quad Z ::= Z + 1 ;;
\quad Y ::= Y + 1 ;;
\textbf{END}
\quad X ::= X + 1 ;;
\textbf{END}
\{\{ Z = m \times n \}\}
\]

On the next page, add appropriate annotations to the program in the provided spaces to show that the Hoare triple given by the outermost pre- and post-conditions is valid. Use informal notations for mathematical formulae and assertions, but please be completely precise and pedantic in the way you apply the Hoare rules — i.e., write out assertions in \textit{exactly} the form given by the rules (rather than logically equivalent ones). The provided blanks have been constructed so that, if you work backwards from the end of the program, you should only need to use the rule of consequence in the places indicated with \(\Rightarrow\).

The Hoare rules and the rules for well-formed decorated programs are provided on pages 16 and 17, for reference.
Mark the implication step(s) in your decoration (by circling the ->>) that rely on the following fact. You may use other arithmetic facts silently.

- \(m \times a + m = m \times (a + 1) \)

\[
\begin{align*}
\{\text{ True }\} & \rightarrow \\{\text{}\} \\
X & := 0; \\
\{\text{}\} & \rightarrow \\{\text{}\} \\
Z & := 0; \\
\{\text{}\} & \rightarrow \\{\text{}\} \\
\text{WHILE } X \not< n \text{ DO} & \\rightarrow \\{\text{}\} \\
\{\text{}\} & \rightarrow \\{\text{}\} \\
Y & := 0; \\
\{\text{}\} & \rightarrow \\{\text{}\} \\
\text{WHILE } Y \not< m \text{ DO} & \\rightarrow \\{\text{}\} \\
\{\text{}\} & \rightarrow \\{\text{}\} \\
Z & := Z + 1; \\
\{\text{}\} & \rightarrow \\{\text{}\} \\
Y & := Y + 1; \\
\{\text{}\} & \rightarrow \\{\text{}\} \\
\text{END} & \\rightarrow \\{\text{}\} \\
\{\text{}\} & \rightarrow \\{\text{}\} \\
X & := X + 1; \\
\{\text{}\} & \rightarrow \\{\text{}\} \\
\text{END} & \\rightarrow \\{\text{}\} \\
\{\text{}\} & \rightarrow \\{\text{}\} \\
\{ Z = m \times n \}\}
4. (16 points) Inductive Definitions and Scoping

Consider the following Coq definitions for a simple language of arithmetic expressions with constants, variables, plus, and let.

\[
\text{Definition id := nat.}
\]
\[
\text{Inductive tm : Type :=}
\]
\[
| \text{tnum : nat -> tm} (* Constants 0, 1, 2, ... *)
\]
\[
| \text{tvar : id -> tm} (* Variables X Y Z ... *)
\]
\[
| \text{tplus : tm -> tm -> tm} (* Plus: t1 + t2 *)
\]
\[
| \text{tlet : id -> tm -> tm -> tm.} (* Let: let X = t1 in t2 *)
\]

The let construct follows the usual variable scoping rules. That is, in let X = t1 in t2, written in Coq as (tlet X t1 t2), the variable X is bound in t2.

Recall that a variable X appears free in a term t if there is an occurrence of X that is not bound by a corresponding let. Complete the following Coq definition of \text{afi} as an inductively defined relation such that \text{afi X t} is provable if and only if X appears free in t.

\[
\text{Inductive afi : id -> tm -> Prop :=}
\]
5. (12 points) Multiple Choice — Simply-typed Lambda Calculus

Mark all correct answers. There may be zero or more than one.

In this problem we consider a variant of the simply-typed lambda calculus with natural numbers, the syntax, small-step semantics, and typing rules for which are given starting on page 19. Note: for this problem we do not consider STLC with subtyping, fix, or other extensions.

This language is type safe, a fact that can be proved using the standard preservation, and progress proofs, and evaluation is deterministic.

(a) Which of the following properties would still hold if we remove the predicate value v1 from the ST_App2 rule?

i. step is deterministic
ii. Progress
iii. Preservation

(b) Which of the following properties would still hold if we add the following rule to the step relation?

\[(0, 0) \Rightarrow 0\]

i. step is deterministic
ii. Progress
iii. Preservation

(c) Which of the following properties would still hold if we replace the T_App rule with the following variant?

\[
\begin{align*}
\Gamma &\vdash t_1 \in \text{Nat} \rightarrow T_{12} \\
\Gamma &\vdash t_2 \in \text{Nat} \\
\hline
\Gamma &\vdash t_1 \ t_2 \in T_{12}
\end{align*}
\]

i. step is deterministic
ii. Progress
iii. Preservation

(d) Which of the following properties would still hold if we added the following typing rule?

\[
\begin{align*}
\Gamma &\vdash t_1 \in \text{Nat} \\
\Gamma &\vdash t_2 \in \text{Nat} \\
\hline
\Gamma &\vdash t_1 \ t_2 \in \text{Nat}
\end{align*}
\]

i. step is deterministic
ii. Progress
iii. Preservation
(a) Recall that we can draw typing derivations as “trees” where each node is a judgment of the form $\Gamma \vdash t \in T$. The root of the tree (pictured at the bottom of the drawing) is the desired conclusion, and each premise is a subtree that instantiates a typing rule. For example, the following is a legal typing derivation:

```
------------- T_Zero
x:Nat \vdash 0 \in Nat
------------ T_Succ
x:Nat \vdash S 0 \in Nat
-------------- T_Abs
\vdash \lambda x:Nat. (S 0) \in Nat \rightarrow Nat
```

Complete the typing derivation given below. Label the inference rule used at each node of the tree. Note that the type of the root judgment needs to be filled in.
(b) Rather than adding if0 and the general recursion operator fix, here we follow Coq and add a built-in form of natural-number induction.

\[
t ::= \ldots
 \mid \text{nat_ind } t \ t \ t
\]

The term nat_ind \(tz\) \(ts\) \(tn\) acts like a fold over the natural number datatype. The term \(tz\) specifies what to do for the base (zero) case of the induction, and the term \(ts\) (successor) shows how to compute the answer for \(S\ n\) given \(n\) itself and the inductive result for \(n\). The argument \(tn\) is the natural number over which induction is being done.

Once we have added nat_ind to the STLC, we can write many familiar programs using natural numbers. For example, here is a function that adds two natural numbers, defined by induction on \(n\). The base case is just \(m\) and the inductive step computes the successor of the recursive result:

\[
(* \text{Nat_plus} *) \quad \forall n:\text{Nat}. \quad \forall m:\text{Nat}. \quad \text{nat_ind } m \ (\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ n
\]

The steps it takes when computing Nat_plus 2 1 look like this, where we have marked the novel behavior of nat_ind with \(!!\):

\[
(\forall n:\text{Nat}. \ (\forall m:\text{Nat}. \ (\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ m))\ (S\ S\ 0) (S\ 0)
\]

\[
==\>
(\forall m:\text{Nat}. \ (\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ (S\ S\ 0))\ (S\ 0)
\]

\[
==\> \text{nat_ind } (S\ 0) \ (\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ (S\ S\ 0)
\]

\[
==\> \text{nat_ind } (S\ 0) \ (\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ (S\ S\ 0)
\]

\[
==\> !! \text{ inductive case}
\]

\[
(\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ (S\ 0)\ (\text{nat_ind } (S\ 0) \ (\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ (S\ 0))
\]

\[
==\> !! \text{ inductive case}
\]

\[
(\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ (S\ 0)\ ((\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ 0\ (\text{nat_ind } (S\ 0) \ (\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ 0))
\]

\[
==\> !! \text{ base case}
\]

\[
(\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ (S\ 0)\ ((\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ 0\ (S\ 0))
\]

\[
==\>
(\forall x:\text{Nat}. \ (\forall y:\text{Nat}. \ S\ y))\ (S\ 0)\ ((\forall y:\text{Nat}. \ S\ y))\ (S\ 0))
\]

\[
==\>
(\forall y:\text{Nat}. \ S\ y)\ (S\ (S\ 0))
\]

\[
==\>
S\ (S\ (S\ 0))
\]

In general, the small step semantics of nat_ind should work like:

\[
nat_ind\ vz\ vs\ 3\ ==\>*\ vs\ 2\ (vs\ 1\ (vs\ 0\ vz))
\]

where we write 3 as a shorthand for \(S\ S\ S\ 0\), etc.
Define the small-step operational semantics for \texttt{nat_plus}. There are three “structural” rules that evaluate the arguments to \texttt{nat_ind} in order from left-to-right. The first such rule is:

\[
\texttt{tz} \Rightarrow \texttt{tz}'
\]

\[
\texttt{nat_ind tz ts tn} \Rightarrow \texttt{nat_ind tz'} ts tn
\]

Write the other two structural rules below. Use the \texttt{value} predicate as appropriate.

After reducing all three arguments to values, the “interesting” rules of the small step semantics do case analysis on the third argument, yielding the base case, or performing a recursive call as appropriate. Complete these two rules for the small-step operational semantics of \texttt{nat_ind}.

\[
\texttt{value vz} \quad \texttt{value vs}
\]

\[
\texttt{nat_ind vz vs 0} \Rightarrow
\]

\[
\texttt{value vz} \quad \texttt{value vs} \quad \texttt{value vn}
\]

\[
\texttt{nat_ind vz vs (S vn)} \Rightarrow
\]
(c) It remains to give a typing rule for \texttt{nat_ind}. We know that the third argument to \texttt{nat_ind} is supposed to be a \texttt{Nat}, so that part is easy. The result type of a \texttt{nat_ind} expression can be any type \(T\), since we could conceivably construct any value by induction on a natural number. We have filled in those parts of the typing rule below.

Your job is to complete the typing rule. Consider that this rule should be sound (i.e. satisfy preservation and progress) with respect to the operational semantics outlined above. For example, the term \texttt{Nat_plus} defined in part (b) should be well-typed according to your rule.

\[
\begin{align*}
\Gamma &\vdash tz \in \\
\Gamma &\vdash ts \in \\
\Gamma &\vdash tn \in \texttt{Nat}
\end{align*}
\]

\[
\begin{align*}
\Gamma &\vdash \texttt{nat_ind tz ts tn} \in T
\end{align*}
\]
(d) Part (b) used \texttt{nat_ind} to define the \texttt{Nat_plus} function. Use \texttt{Nat_plus} and \texttt{nat_ind} to define multiplication of two numbers. We have provided the type of \texttt{Nat_mult} to get you started:

\[
\ast \texttt{Nat_mult} : \texttt{Nat} \rightarrow \texttt{Nat} \rightarrow \texttt{Nat} \ast
\]

(e) A harder function to define using \texttt{nat_ind} is natural number equality, a function \texttt{Nat_eq} of type \texttt{Nat} \rightarrow \texttt{Nat} \rightarrow \texttt{Nat} such that \texttt{Nat_eq n m} ==\ast 0 if \texttt{n} and \texttt{m} are different natural numbers and \texttt{nat_eq n m} ==\ast 1 if they are the same.

We have started the definition. Fill in the two blanks to complete it.

\[
\ast \texttt{Nat_eq} : \texttt{Nat} \rightarrow \texttt{Nat} \rightarrow \texttt{Nat} \ast
\]

\[\texttt{n:Nat. nat_ind} \ (\underline{\texttt{______________________________}}) \ (* \texttt{base case} *)\]

\[\underline{\texttt{______________________________}} \ (* \texttt{inductive case} *)\]

\[\texttt{n} \ (* \texttt{do induction on n} *)\]
7. (10 points) Subtyping

The rules for STLC with pairs and subtyping are given on page 21 for your reference. The subtyping relations among a collection of types can be visualized compactly in picture form: we draw a graph so that $S <: T$ iff we can get from S to T by following arrows in the graph (either directly or indirectly). For example, a picture for the types $\text{Top}*\text{Top}$, $\text{A}*\text{Top}$, $\text{Top}*(\text{Top}*\text{Top})$, and $\text{Top}*(\text{A}*\text{A})$ would look like this (it happens to form a tree, but that is not necessary in general):

```
Top*Top
   /   \
A*Top  Top*(Top*Top)
   |
   v
Top*(A*A)
```

Suppose we have defined types A and B so that $A <: B$. Draw a picture for the following six types.

- $\text{Top} -> (A * B)$
- $\text{Top} -> (A * A)$
- $(B * A) -> (B * A)$
- $(A * B) -> (B * A)$
- $(B * A) -> \text{Top}$
- Top
8. (8 points) True or False
 For each question, indicate whether it is true or false. Very briefly justify your answer.

 (a) In the STLC with subtyping (see the rules on page 21) there exists a type T such that $\lambda x: T. \ x \ x$ is typeable.

 (b) In the STLC with subtyping, there is at most one typing derivation for each term t.

 (c) In the STLC with subtyping and records, the empty record type $\{\}$ is a subtype of all other records.

 (d) In the STLC with subtyping and records, it is sound (i.e. both preservation and progress still hold) to add the subtyping rule $\text{Top} <: \{\}$.
Formal definitions for Imp

Syntax

Inductive aexp : Type :=
| ANum : nat -> aexp
| AId : id -> aexp
| APlus : aexp -> aexp -> aexp
| AMinus : aexp -> aexp -> aexp
| AMult : aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com -> com.

Notation "'SKIP'" :=
CSkip.
Notation "l '::=' a" :=
(CAss l a) (at level 60).
Notation "c1 ; c2" :=
(CSeq c1 c2) (at level 80, right associativity).
Notation "'WHILE' b 'DO' c 'END'" :=
(CWhile b c) (at level 80, right associativity).
Notation "'IFB' e1 'THEN' e2 'ELSE' e3 'FI'" :=
(CIf e1 e2 e3) (at level 80, right associativity).
Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=
 | E_Skip : forall st,
 SKIP / st || st
 | E_Ass : forall st a1 n X,
 aeval st a1 = n ->
 (X ::= a1) / st || (update st X n)
 | E_Seq : forall c1 c2 st st' st'’,
 c1 / st || st' ->
 c2 / st' || st'' ->
 (c1 ; c2) / st || st''
 | E_IfTrue : forall st st' b1 c1 c2,
 beval st b1 = true ->
 c1 / st || st' ->
 (IFB b1 THEN c1 ELSE c2 FI) / st || st'
 | E_IfFalse : forall st st' b1 c1 c2,
 beval st b1 = false ->
 c2 / st || st' ->
 (IFB b1 THEN c1 ELSE c2 FI) / st || st'
 | E_WhileEnd : forall b1 st c1,
 beval st b1 = false ->
 (WHILE b1 DO c1 END) / st || st
 | E_WhileLoop : forall st st' st’’ b1 c1,
 beval st b1 = true ->
 c1 / st || st' ->
 (WHILE b1 DO c1 END) / st’ || st’’ ->
 (WHILE b1 DO c1 END) / st || st’’

where "c1 '/' st '||' st''" := (ceval c1 st st').

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=
 forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=
 forall (st st' : state),
 (c1 / st || st') <-> (c2 / st || st').

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
 forall st st',
 c / st || st' -> P st -> Q st'.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q).
Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=
forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII \(\rightarrow\rightarrow\) is typeset as a hollow arrow in the rules below.)

Hoare logic rules

\[\begin{align*}
\text{\{ assign_sub X a Q \} X := a \ q Q \} \quad \text{(hoare_asgn)} \\
\text{\{ P \} SKIP \ q P \} \quad \text{(hoare_skip)} \\
\text{\{ P \} \ c_1 \ q Q \} \\
\text{\{ Q \} \ c_2 \ q R \} \\
\text{\{ P \} \ c_1; \ c_2 \ q R \} \quad \text{(hoare_seq)} \\
\text{\{ P \land b \} \ c_1 \ q Q \} \\
\text{\{ P \land \lnot b \} \ c_2 \ q Q \} \\
\text{\{ P \} \ IFB \ b \ THEN \ c_1 \ ELSE \ c_2 \ FI \ q Q \} \quad \text{(hoare_if)} \\
\text{\{ P \land b \} \ c \ q P \} \\
\text{\{ P \} \ WHILE \ b \ DO \ c \ END \ q P \land \lnot b \} \quad \text{(hoare_while)} \\
\text{\{ P' \} \ c \ q Q' \} \\
\text{\{ Q' \} \ q Q \} \quad \text{(hoare_consequence)} \\
\text{\{ P' \} \ c \ q Q \} \\
\text{\{ P \} \ q P' \} \\
\text{\{ Q' \} \ q Q \} \quad \text{(hoare_consequence_pre)} \\
\text{\{ Q' \} \ q Q \} \\
\text{\{ P \} \ q Q \} \quad \text{(hoare_consequence_post)}
\end{align*}\]

16
Decorated programs

(a) SKIP is locally consistent if its precondition and postcondition are the same:

\{\{ P \}\}\n\textbf{SKIP}\n\{\{ P \}\}\n
(b) The sequential composition of \(c_1\) and \(c_2\) is locally consistent (with respect to assertions \(P\) and \(R\)) if \(c_1\) is locally consistent (with respect to \(P\) and \(Q\)) and \(c_2\) is locally consistent (with respect to \(Q\) and \(R\)):

\{\{ P \}\}\nc1;\n\{\{ Q \}\}\nc2\n\{\{ R \}\}\n
(c) An assignment is locally consistent if its precondition is the appropriate substitution of its postcondition:

\{\{ P \{X |-> a\} \}\}\n\textbf{X := a}\n\{\{ P \}\}\n
(d) A conditional is locally consistent (with respect to assertions \(P\) and \(Q\)) if the assertions at the top of its "then" and "else" branches are exactly \(P \land b\) and \(P \land \neg b\) and if its "then" branch is locally consistent (with respect to \(P \land b\) and \(Q\)) and its "else" branch is locally consistent (with respect to \(P \land \neg b\) and \(Q\)):

\{\{ P \}\}\n\textbf{IFB b THEN}\n\{\{ P \land b \}\}\nc1\n\{\{ Q \}\}\n\textbf{ELSE}\n\{\{ P \land \neg b \}\}\nc2\n\{\{ Q \}\}\n\textbf{FI}\n\{\{ Q \}\}
(e) A while loop with precondition P is locally consistent if its postcondition is $P \land \neg b$ and if the pre- and postconditions of its body are exactly $P \land b$ and P:

\[
\{\{ P \}\}
\text{WHILE } b \text{ DO}
\{\{ P \land b \}\}
c1
\{\{ P \}\}
\text{END}
\{\{ P \land \neg b \}\}
\]

(f) A pair of assertions separated by $\rightarrow\rightarrow$ is locally consistent if the first implies the second (in all states):

\[
\{\{ P \}\} \rightarrow\rightarrow
\{\{ P' \}\}
\]
STLC with Natural Numbers

Syntax

(* Types *) (* Terms *) (* Values *)
T ::= Nat t ::= x v ::= 0
 | T -> T | t t | S v
 | \x:T. t | \x:T. t
 | 0
 | S t

Small-step operational semantics

\text{value } v2
\hline
--- \text{(ST_AppAbs)}
(\langle x:T. t12 \rangle v2 \Rightarrow [x:=v2]t12
\text{t1 }\Rightarrow \text{t1'}
-------------------------------- \text{(ST_App1)}
\text{t1 t2 }\Rightarrow \text{t1' t2}

\text{value } v1
\text{t2 }\Rightarrow \text{t2'}
-------------------------------- \text{(ST_App2)}
\text{v1 t2 }\Rightarrow \text{v1 t2'}

\text{t1 }\Rightarrow \text{t1'}
-------------------------------- \text{(ST_Succ)}
\text{S t1 }\Rightarrow \text{S t1'}
Typing

\[\Gamma \vdash x = T \]

\[\Gamma \vdash x \in T\] \hspace{1cm} (T_{\text{Var}})

\[\Gamma, x : T_{11} \vdash t_{12} \in T_{12}\]

\[\Gamma \vdash \lambda x : T_{11}.t_{12} \in T_{11} \rightarrow T_{12}\] \hspace{1cm} (T_{\text{Abs}})

\[\Gamma \vdash t_{1} \in T_{11} \rightarrow T_{12}\]
\[\Gamma \vdash t_{2} \in T_{11}\]

\[\Gamma \vdash t_{1} t_{2} \in T_{12}\] \hspace{1cm} (T_{\text{App}})

\[\Gamma \vdash 0 \in \text{Nat}\] \hspace{1cm} (T_{\text{Zero}})

\[\Gamma \vdash t \in \text{Nat}\]

\[\Gamma \vdash S \ t \in \text{Nat}\] \hspace{1cm} (T_{\text{Succ}})
STLC with pairs and subtyping (excerpt)

Types

\[T ::= \ldots \]
\[\mid \text{Top} \]
\[\mid T \rightarrow T \]
\[\mid T \times T \]

Subtyping relation

\[
\begin{align*}
S <: U \quad & U <: T \quad \text{-----------------(S_Trans)} \\

S <: T & \\

------ & \text{(S_Refl)} \\

T <: T & \\

------ & \text{(S_Top)} \\

S <: \text{Top} & \\

S1 <: T1 \quad & S2 <: T2 \quad \text{--------------------(S_Prod)} \\

S1 \times S2 <: T1 \times T2 & \\

T1 <: S1 \quad & S2 <: T2 \quad \text{--------------------(S_Arrow)} \\

S1 \rightarrow S2 <: T1 \rightarrow T2 &
\end{align*}
\]