CIS 500 — Software Foundations

Midterm I

(Standard version)

September 30, 2014

Name: __

Pennkey: __

Scores:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Total (90 max)</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points) Circle True or False for each statement.

(a) All functions defined in Coq via Fixpoint must terminate on all inputs.
 True False

(b) The proof of an implication \(P \rightarrow Q \) is a function that uses a proof of the proposition \(P \) to produce a proof of the proposition \(Q \).
 True False

(c) The proposition \(\text{true} = \text{false} \) is provable in Coq.
 True False

(d) Given a function \(f \) of type \(\text{nat} \rightarrow \text{bool} \), it is possible to define a proposition that holds when \(f \) returns \(\text{true} \) for all natural numbers.
 True False

(e) There are no empty types in Coq. In other words, for any type \(A \), there is some Coq expression that has type \(A \).
 True False

(f) If \(H : \text{true} = \text{false} \) is a current assumption, then the tactic \text{inversion} \(H \) will solve any goal.
 True False

(g) If \(H : S \ x = S \ (S \ y) \) is a current assumption, then the tactic \text{inversion} \(H \) will solve any goal.
 True False

(h) If \(H : x \not= y \) is a current assumption, then the tactic \text{inversion} \(H \) will solve any goal.
 True False

(i) If the goal is \(A \ \land \ B \), then the tactic \text{split} will produce two subgoals, one for \(A \) and one for \(B \).
 True False

(j) If \(H : x_1 :: y_1 = x_2 :: y_2 \) is a current assumption, then we know that \(x_1 \) is equal to \(x_2 \).
 True False
2. (10 points) Write the type of each of the following Coq expressions, or write “ill-typed” if it does not have one. (The references section contains the definitions of some of the mentioned functions and propositions.)

(a) beq_nat 3 4

(b) 3=4

(c) forall (X:Type), forall (x:X), x = x

(d) fun (X:Prop) => X -> X

(e) fun (x:nat) => x :: x
3. (8 points) For each of the types below, write a Coq expression that has that type or write “Empty” if there are no such expressions. (The references section contains the definitions of some of the mentioned functions and propositions.)

(a) \(\forall (X:\text{Type}), \text{list } X \rightarrow \text{nat} \)

(b) \(\text{Prop} \)

(c) \(\text{beautiful } 8 \)

(d) \(\forall (X:\text{Prop}), X \rightarrow \neg \neg X \)
4. (12 points) For each of the given theorems, which set of tactics is needed to prove it besides intros and reflexivity? If more than one of the sets of tactics will work, choose the smallest set. Note that each proof should be completed directly, without the help of any lemmas.

(a) Theorem \text{mult}_0_l : \forall n : \text{nat}, 0 \times n = 0.

 i. induction and rewrite
 ii. rewrite and simpl
 iii. inversion
 iv. no additional tactics are necessary

(b) Lemma \text{plus}_\text{assoc} : \forall n \ m \ p : \text{nat}, n + (m + p) = (n + m) + p.

 i. simpl and rewrite
 ii. simpl, rewrite and induction
 iii. rewrite
 iv. no additional tactics are necessary

(c) Lemma \text{and}_\text{assoc} : \forall P \ Q \ R : \text{Prop}, (P \land (Q \land R)) \to (P \land Q) \land R.

 i. inversion
 ii. rewrite, induction, and inversion
 iii. inversion, split, and apply
 iv. no additional tactics are necessary

(d) Theorem \text{ble}_\text{plus} : \forall n \ m \ p : \text{nat}, \text{ble_nat} n m = \text{true} \to \text{ble_nat} (p + n) (p + m) = \text{true}.

 i. simpl, apply, and destruct n
 ii. simpl, apply, and induction p
 iii. simpl, apply, and induction n
 iv. no additional tactics are necessary
5. (17 points) An alternate way to encode lists in Coq is the \texttt{jlist} type, shown below.

\begin{verbatim}
Inductive jlist (X:Type) : Type :=
| j_nil : jlist X |
| j_one : X -> jlist X |
| j_app : jlist X -> jlist X -> jlist X.

(* Make the type parameter implicit *)
Arguments j_nil {X}.
Arguments j_one {X} _.
Arguments j_app {X} _ _.
\end{verbatim}

We can convert a \texttt{jlist} to a regular \texttt{list} with the following function:

\begin{verbatim}
Fixpoint to_list {X : Type} (jl : jlist X) : list X :=
match jl with
| j_nil => []
| j_one x => [x]
| j_app j1 j2 => to_list j1 ++ to_list j2
end.
\end{verbatim}

(a) Note that there may be multiple \texttt{jlists} that represent the same \texttt{list}. Demonstrate this fact by giving definitions of \texttt{example1} and \texttt{example2} such that the Lemma below (\texttt{distinct_jlists_to_same_list}) is provable (there is no need to prove it).

Definition example1 : jlist nat :=

Definition example2 : jlist nat :=

Lemma distinct_jlists_to_same_list :
example1 <> example2 /
(to_list example1) = (to_list example2).
(b) It is also possible to define most list operations directly on the \texttt{jlist} representation. Complete the following function for mapping over a \texttt{jlist}:

\[
\text{Fixpoint } \text{j_map } \{X \ Y : \text{Type}\} \ (f : X \to Y) \ (x : \text{jlist} \ X) : \text{jlist} \ Y :=
\]

(c) What is the type of the expression \text{j_one}?

(d) What is the type of the expression \text{j_map (\text{fun} \ (x:\text{nat}) \to \text{beq_nat} \ x \ 0)}?
(c) Your \texttt{j_map} function from part (b) should satisfy the following correctness lemma that states that it agrees with the \texttt{list map} operation. (The \texttt{list map} function is shown in the references.) The proof of this lemma for our definition of \texttt{j_map} is shown below. This proof uses an auxiliary lemma (\texttt{map_app}), not shown.

\begin{verbatim}
Lemma j_map_correct : forall (X:Type) (Y:Type) (f : X -> Y) (l:jlist X),
 to_list (j_map f l) = map f (to_list l).
Proof.
intros X Y f l. induction l as [|x|l1 IHl1 l2 IHl2].
Case "j_nil".
 simpl. reflexivity.
Case "j_one".
 simpl. reflexivity.
Case "j_app".
 simpl. rewrite IHl1. rewrite IHl2. apply map_app.
Qed.
\end{verbatim}

The \texttt{j_app} case of the \texttt{j_map} correctness proof makes use of two different induction hypotheses, called \texttt{IHl1} and \texttt{IHl2}. Circle the correct statement of \texttt{IHl1} used in this case of the proof.

\begin{enumerate}[i.]
\item \texttt{IHl1}: to_list (j_app l1 l2) = map f (to_list (j_app l1 l2))
\item \texttt{IHl1}: to_list (j_map f l1) = map f (to_list l1)
\item \texttt{IHl1}: forall l1:jlist X. to_list (j_map f l1) = map f (to_list l1)
\item \texttt{IHl1}: forall l2:jlist X. to_list (j_app l1 l2) = map f (to_list (j_app l1 l2))
\end{enumerate}

Circle the statement of the lemma \texttt{map_app}, necessary to complete the \texttt{j_app} case of the \texttt{j_map} correctness proof.

\begin{enumerate}[i.]
\item Lemma \texttt{map_app} : forall X Y (f:X -> Y) l1 l2,
 \hspace{1cm} j_map f (j_app l1 l2) = j_app (j_map f l1) (j_map f l2)
\item Lemma \texttt{map_app} : forall X Y (f:X -> Y) l1 l2,
 \hspace{1cm} map f (l1 ++ l2) = j_map f (j_app l1 l2)
\item Lemma \texttt{map_app} : forall X Y (f:X -> Y) l1 l2,
 \hspace{1cm} map f l1 ++ map f l2 = j_app (j_map f l1) (j_map f l2)
\item Lemma \texttt{map_app} : forall X Y (f:X -> Y) l1 l2,
 \hspace{1cm} map f l1 ++ map f l2 = map f (l1 ++ l2).
\end{enumerate}
6. (13 points) In this question, we’ll consider two different implementations of the same list function—one as an inductively defined relation and one as a Fixpoint.

(a) The function \texttt{f-repeat} takes an element \(x\) and a number \(n\) and returns a list containing \(n\) copies of the element. For example:

\[
\begin{align*}
\text{f-repeat} \texttt{true} 3 &= [\texttt{true}; \texttt{true}; \texttt{true}] \\
\text{f-repeat} 4 \quad 0 &= []
\end{align*}
\]

Complete the Fixpoint definition of \texttt{f-repeat}.

\texttt{Fixpoint f-repeat \{X : Type\} (x : X) (n : nat) : list X :=}

(b) Similarly, the relation \texttt{r-repeat} is a three place relation that holds between an element \(x\), a number \(n\), and a list \(xs\) if and only if \(xs\) is the list obtained by repeating the element \(n\) times. For example, the following are provable instances of \texttt{r-repeat}.

\[
\begin{align*}
\text{r-repeat} \texttt{true} 3 &= [\texttt{true}; \texttt{true}; \texttt{true}] \\
\text{r-repeat} 4 \quad 0 &= []
\end{align*}
\]

Complete an Inductive definition of \texttt{r-repeat}. Note, your answer must not use \texttt{f-repeat}.

\texttt{Inductive r-repeat \{X : Type\} : X -> nat -> list X -> Prop :=}
(c) Suppose we want to show the equivalence between the functional definition of repetition and the relational specification. As part of that, we should prove the following lemma:

Lemma repeat_f_to_r : forall X x n (l : list X),
 f_repeat x n = l -> r_repeat x n l.

An ill-advised proof of this lemma might start as follows:

Proof.
intros X x n l H. induction n as [|n'].
Case "0".
 admit. (* skipping base case for now. *)
Case "S n'".
 destruct l as [|x0 l0].
 SCase "l=[]". simpl in H. inversion H.
 SCase "l=x0 :: l0".

At this point, the proof state looks like the following:

SCase := "l=x0 :: l0" : String.string
Case := "S n'" : String.string
X : Type
x : X
n' : nat
x0 : X
l0 : list X
H : f_repeat x (S n') = x0 :: l0
IHn' : f_repeat x n' = x0 :: l0 -> r_repeat x n' (x0 :: l0)

What are the next steps in the proof? What is the problem with this proof attempt after those steps have been taken? How might this problem be resolved? Be specific. (Use the next page if you need more space.)
(Extra space for the previous problem.)
Inductive nat : Type :=
 \mid O : nat
 \mid S : nat \to nat.

Inductive and (P Q : Prop) : Prop :=
 conj : P \to Q \to (and P Q).

Notation "P \land Q" := (and P Q) : type_scope.

Inductive True : Prop :=
 I : True.

Inductive False : Prop := .

Definition not (P:Prop) := P \to False.

Notation "\neg x" := (not x) : type_scope.

Notation "x \neq y" := (~ (x = y)) : type_scope.

Fixpoint plus (n : nat) (m : nat) : nat :=
 match n with
 | O => m
 | S n' => S (plus n' m)
 end.

Notation "x + y" := (plus x y)(at level 50, left associativity) : nat_scope.

Fixpoint mult (n : nat) (m : nat) : nat :=
 match n with
 | 0 => 0
 | S n' => m + (mult n' m)
 end.

Notation "x \times y" := (mult x y)(at level 40, left associativity) : nat_scope.

Fixpoint beq_nat (n m : nat) : bool :=
 match n, m with
 | O, O => true
 | S n', S m' => beq_nat n' m'
 | _, _ => false
 end.
Fixpoint ble_nat (n m : nat) : bool :=
 match n with
 | O => true
 | S n' =>
 match m with
 | O => false
 | S m' => ble_nat n' m'
 end
end.

Inductive beautiful : nat -> Prop :=
 b_0 : beautiful 0
| b_3 : beautiful 3
| b_5 : beautiful 5
| b_sum : forall n m, beautiful n -> beautiful m -> beautiful (n+m).

Inductive list (X:Type) : Type :=
 | nil : list X
 | cons : X -> list X -> list X.

Fixpoint app (X : Type) (l1 l2 : list X) : (list X) :=
 match l1 with
 | nil => l2
 | cons h t => cons X h (app X t l2)
 end.

Notation "x ++ y" := (app x y) (at level 60, right associativity).

Fixpoint map {X Y:Type} (f:X->Y) (l:list X) : (list Y) :=
 match l with
 | [] => []
 | h :: t => (f h) :: (map f t)
 end.

Fixpoint filter {X:Type} (test: X->bool) (l:list X) : (list X) :=
 match l with
 | [] => []
 | h :: t => if test h then h :: (filter test t)
 else filter test t
 end.