CIS 500 — Software Foundations

Midterm II

(Advanced version)

November 11, 2014

Name: ________________________________

Pennkey (e.g. sweirich): ________________________________

Scores:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Total:</td>
<td>70</td>
</tr>
</tbody>
</table>
1. **Hoare triples**

Which of the Hoare triples below are valid? If a triple is valid, circle the rules of Hoare logic that are necessary to justify the validity of that triple. You may need to circle more than one rule for a given triple, but do not circle a particular rule if the triple can be justified without it. Otherwise, if the triple is invalid, circle the last bullet.

For reference, the rules of Hoare logic are given in the Appendix, starting on page 13.

(a) \(\{ 0 \leq 3 + 4 \} \) \(X := 3 + 4 \) \(\{ 0 \leq X \}\)
- \(\text{hoare_asgn}\)
- \(\text{hoare_skip}\)
- \(\text{hoare_while}\)
- \(\text{hoare_consequence}\)
- *Not a valid Hoare Triple*

(b) \(\{ X = X + 1 \} \) \(X := X + 1 \) \(\{ \text{True} \}\)
- \(\text{hoare_asgn}\)
- \(\text{hoare_skip}\)
- \(\text{hoare_while}\)
- \(\text{hoare_consequence}\)
- *Not a valid Hoare Triple*

(c) \(\{ \text{True} \} \) \(X := X + 1 \) \(\{ X = X + 1 \}\)
- \(\text{hoare_asgn}\)
- \(\text{hoare_skip}\)
- \(\text{hoare_while}\)
- \(\text{hoare_consequence}\)
- *Not a valid Hoare Triple*

(d) \(\{ \text{True} \} \) \text{WHILE BTrue DO SKIP END} \(\{ \text{False} \}\)
- \(\text{hoare_asgn}\)
- \(\text{hoare_skip}\)
- \(\text{hoare_while}\)
- \(\text{hoare_consequence}\)
- *Not a valid Hoare Triple*
2. Properties of Imp relations

Which of the following propositions about Imp are provable in Coq? (You may reason using the axiom `functional_extensionality`, if needed.) Circle True or False. If the property is not provable, explain why or provide a counterexample.

For reference, the relations `ceval (c / st \downarrow st')`, `cequiv`, and Hoare triples (\{ P \} c \{ Q \}) appear on pages 13 and 14.

(a) \exists c, \forall st st', \sim(\forall/st \downarrow st')

True False

(b) \forall c st st', (\forall/st \downarrow st')

True False

(c) \forall c st st1 st2, (\forall/st \downarrow st1) \rightarrow (\forall/st \downarrow st2) \rightarrow st1 = st2

True False

(d) \forall c st st1 st2, (\forall/st1 \downarrow st) \rightarrow (\forall/st2 \downarrow st) \rightarrow st1 = st2

True False
(e) \(\forall P \ Q \ c_1 \ c_2, \{ P \} \ c_1 \ \{ Q \} \rightarrow \{ P \} \ c_2 \ \{ Q \} \rightarrow \text{cequiv} \ c_1 \ c_2\)

\begin{align*}
\text{True} & \quad \text{False} \\
\end{align*}

(f) \(\forall P \ Q \ c_1 \ c_2, \text{cequiv} \ c_1 \ c_2 \rightarrow (\{ P \} \ c_1 \ \{ Q \} \leftrightarrow \{ P \} \ c_2 \ \{ Q \})\)

\begin{align*}
\text{True} & \quad \text{False} \\
\end{align*}
3. Decorated Programs

Recall the factorial function, written in Coq:

```coq
Fixpoint fact (n:nat) : nat :=
  match n with
  | O => 1
  | S n' => n * (fact n')
end.
```

The following Imp program computes the factorial of \(X\) and places the answer into \(Y\).

```imp
Y ::= 1
WHILE X <> 0 DO
  Y ::= Y * X
  X ::= X - 1
END
```

On the next page, add appropriate annotations to the program in the provided spaces to show that the Hoare triple given by the outermost pre- and post-conditions is valid. Use informal notations for mathematical formulae and assertions (and abbreviate `fact x` with `!x`, but please be completely precise and pedantic in the way you apply the Hoare rules — i.e., write out assertions in `exactly` the form given by the rules (rather than logically equivalent ones). The provided blanks have been constructed so that, if you work backwards from the end of the program, you should only need to use the rule of consequence in the places indicated with `->>`. The implication steps in your decoration may rely (silently) on the following facts, as well as the usual rules of arithmetic:

- `minus_n_0 : forall n, n - 0 = n`
- `mult_assoc : forall m n p, m * (n * p) = (m * n) * p`
- `mult_1_r : forall m, m * 1 = m`

The Hoare rules and the rules for well-formed decorated programs are provided on pages 14 and 15, for reference.
\[
\{\{ X = m \} \} \rightarrow\rightarrow
\]

\[
\{\{ Y ::= 1; \} \}
\]

\[
\text{WHILE } X \neq 0 \text{ DO}
\]

\[
\{\{ Y ::= Y \times X; \} \rightarrow\rightarrow\}
\]

\[
\{\{ X ::= X - 1 \} \}
\]

\[
\text{END}
\]

\[
\{\{ Y = m! \} \} \rightarrow\rightarrow
\]

\[
\{\{ Y = m! \} \}
\]
4. Imp Extensions

In this exercise, consider extending Imp with for loops, similar to those found in many other imperative programming language. Our concrete syntax for these loops might look something like this:

```
FOR ( initialization ;; condition ;; increment )
    loopbody
END
```

The initialization command is run before the loop begins. The condition is some boolean expression, and terminates the loop if false. The increment command is performed exactly once every time at the end of each loop iteration.

To formalize the extended language, we first add a clause to the definition of commands with the four components of this new command.

```
Inductive com : Type :=
    ...
    | CFor : com -> bexp -> com -> com -> com.
```

(For simplicitly in the exam, we will not define a Coq notation for this command.) For example, we might represent the following for loop, written in the concrete syntax,

```
FOR (X ::= 0 ;; X <= 10 ;; X ::= X + 1)
    Y ::= Y * X
END
```

as the following Coq expression:

```
CFor (X ::= ANum 0) (* initialization *)
    (BLe (AId X) (ANum 10)) (* condition *)
    (X ::= APlus (AId X) (ANum 1)) (* increment *)
    (Y ::= AMult (AId Y) (AId X)) (* loopbody *)
```

(Problem continues on the next page.)
(a) Refer to the definition of ceval (page 13) for the evaluation relation of Imp. What rule(s) must be added to this definition to formalize the behavior of CFor? Write out the additional rule(s) in formal Coq notation.

$$\text{Inductive ceval : com -> state -> state -> Prop :=}$$
(b) For each purported theorem about Imp with CFor commands below, write either “provable” if the claim is provable, or give a brief (one sentence) explanation, with a counterexample if possible, of why the claim is not provable. For your reference, the definition of cequiv, which remains unchanged from standard Imp, is found on page 13.

i. Theorem thm1 : forall cincr,
 cequiv SKIP (CFor SKIP BTrue cincr SKIP).

ii. Theorem thm2 :
 cequiv (CFor SKIP BTrue SKIP SKIP)
 (WHILE BTrue DO SKIP).

iii. Theorem thm3 : forall cinit bcond cincr cstep,
 cequiv (CFor cinit bcond cincr cstep)
 (cinit ;; CFor SKIP bcond (cincr ;; cstep) SKIP).
(c) Write a Hoare proof rule for the CFor command. (For reference, the standard Hoare rules for Imp are provided on page 14.)

Your rule must be sound. It should also be as precise as possible.
5. **Program approximation**

In this question, we define an asymmetric variant of program equivalence we call *program approximation*. We say that program c_1 *approximates* program c_2 when, for each of the initial states for which c_1 terminates, c_2 also terminates and produces the same final state. Formally, program approximation can be defined as follows:

\[
\text{Definition } \text{capprox} (c_1, c_2 : \text{com}) : \text{Prop} := \\
\forall (st, st' : \text{state}), \\
(c_1 / st \parallel st') \Rightarrow (c_2 / st \parallel st').
\]

For example, the program $c_1 = \text{WHILE } X \not\equiv 1 \text{ DO } X := X - 1 \text{ END}$ approximates the program $c_2 = X := 1$, but c_2 does not approximate c_1 because c_1 does not terminate when $X = 0$. If two programs approximate each other, then they are equivalent.

(a) Find two programs, c_3 and c_4, such that neither approximates the other. Your programs should be short (3 lines max).

(b) Find a program c_{min} that approximates every other program. Formally, the proposition $\forall c', \text{capprox } c_{\text{min}} c'$ should be provable. (Again, 3 lines max).
6. **Informal proof**

Recall that the command `WHILE BTrue DO SKIP END` is an infinite loop. Write a careful, informal proof of this fact. In other words, prove:

\[\forall st, st', \neg (\text{WHILE BTrue DO SKIP END} / st \Downarrow st') \]
Formal definitions for Imp

Syntax

Notation "'SKIP'" :=
 CSkip.
Notation "l '::=' a" :=
 (CAss l a) (at level 60).
Notation "c1 ;; c2" :=
 (CSeq c1 c2) (at level 80, right associativity).
Notation "'WHILE' b 'DO' c 'END'" :=
 (CWhile b c) (at level 80, right associativity).
Notation "'IFB' e1 'THEN' e2 'ELSE' e3 'FI'" :=
 (CIf e1 e2 e3) (at level 80, right associativity).
Evaluation relation

Inductive ceval : com -> state -> state -> Prop :=
| E_Skip : forall st,
 SKIP / st || st |
| E_Ass : forall st a1 n X,
 aeval st a1 = n ->
 (X ::= a1) / st || (update st X n)
| E_Seq : forall c1 c2 st st' st'',
 c1 / st || st' ->
 c2 / st' || st'' ->
 (c1 ;; c2) / st || st''
| E_IfTrue : forall st st' b1 c1 c2,
 beval st b1 = true ->
 c1 / st || st' ->
 (IFB b1 THEN c1 ELSE c2 FI) / st || st'
| E_IfFalse : forall st st' b1 c1 c2,
 beval st b1 = false ->
 c2 / st || st' ->
 (IFB b1 THEN c1 ELSE c2 FI) / st || st'
| E_WhileEnd : forall b1 st c1,
 beval st b1 = false ->
 (WHILE b1 DO c1 END) / st || st
| E_WhileLoop : forall st st' st'' b1 c1,
 beval st b1 = true ->
 c1 / st || st' ->
 (WHILE b1 DO c1 END) / st' || st'' ->
 (WHILE b1 DO c1 END) / st || st''

where "c1 '/' st '||' st'" := (ceval c1 st st').

Program equivalence

Definition bequiv (b1 b2 : bexp) : Prop :=
forall (st:state), beval st b1 = beval st b2.

Definition cequiv (c1 c2 : com) : Prop :=
forall (st st' : state),
(c1 / st || st') <-> (c2 / st || st').

Hoare triples

Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=
forall st st', c / st || st' -> P st -> Q st'.

Notation "{{ P }} c {{ Q }}" := (hoare_triple P c Q).
Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=
forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

\[\begin{align*}
& \mathbb{C}_{\text{assn_sub}} X a Q X := a \mathbb{Q} \quad \text{(hoare_asgn)} \\
& \mathbb{C} P \mathbb{S} \mathbb{K} \mathbb{S} \mathbb{P} \mathbb{K} \mathbb{P} \quad \text{(hoare_skip)} \\
& \mathbb{C} P \mathbb{C} c1 \mathbb{Q} \mathbb{Q} c2 \mathbb{R} \quad \text{(hoare_seq)} \\
& \mathbb{C} P \mathbb{W} b \mathbb{T} \mathbb{H} \mathbb{E} n \mathbb{C} c1 \mathbb{E} L \mathbb{E} c2 \mathbb{F} \mathbb{I} \mathbb{Q} \quad \text{(hoare_if)} \\
& \mathbb{C} P \mathbb{W} b \mathbb{D} \mathbb{O} c \mathbb{E} \mathbb{N} \mathbb{D} P \mathbb{A} \mathbb{D} b \quad \text{(hoare_while)} \\
& \mathbb{C} P' c Q' P' \quad \text{(hoare_consequence)} \\
& \mathbb{C} P' c Q' P' \quad \text{(hoare_consequence_pre)} \\
& \mathbb{C} P c Q' Q' \quad \text{(hoare_consequence_post)}
\end{align*} \]
Decorated programs

(a) SKIP is locally consistent if its precondition and postcondition are the same:

\[
\{\{ \ P \ \} \} \\
\text{SKIP} \\
\{\{ \ P \ \} \}
\]

(b) The sequential composition of \(c_1 \) and \(c_2 \) is locally consistent (with respect to assertions \(P \) and \(R \)) if \(c_1 \) is locally consistent (with respect to \(P \) and \(Q \)) and \(c_2 \) is locally consistent (with respect to \(Q \) and \(R \)):

\[
\{\{ \ P \ \} \} \\
c_1;; \\
\{\{ \ Q \ \} \} \\
c_2 \\
\{\{ \ R \ \} \}
\]

(c) An assignment is locally consistent if its precondition is the appropriate substitution of its postcondition:

\[
\{\{ \ P \ [X \rightarrow a] \ \} \} \\
X := a \\
\{\{ \ P \ \} \}
\]

(d) A conditional is locally consistent (with respect to assertions \(P \) and \(Q \)) if the assertions at the top of its "then" and "else" branches are exactly \(P \land b \) and \(P \land \neg b \) and if its "then" branch is locally consistent (with respect to \(P \land b \) and \(Q \)) and its "else" branch is locally consistent (with respect to \(P \land \neg b \) and \(Q \)):

\[
\{\{ \ P \ \} \} \\
\text{IFB } b \ \text{THEN} \\
\{\{ \ P \land b \} \} \\
c_1 \\
\{\{ \ Q \ \} \} \\
\text{ELSE} \\
\{\{ \ P \land \neg b \} \} \\
c_2 \\
\{\{ \ Q \ \} \} \\
\text{FI} \\
\{\{ \ Q \ \} \}
\]
(e) A while loop with precondition \(P \) is locally consistent if its postcondition is \(P \land \neg b \) and if the pre- and postconditions of its body are exactly \(P \land b \) and \(P \):

\[
\begin{array}{l}
\{\{ П \}\} \\
\text{WHILE } b \text{ DO} \\
\{\{ P \land b \}\} \\
c1 \\
\{\{ P \}\} \\
\text{END} \\
\{\{ P \land \neg b \}\}
\end{array}
\]

(f) A pair of assertions separated by \(\Rightarrow \) is locally consistent if the first implies the second (in all states):

\[
\begin{array}{l}
\{\{ P \}\} \Rightarrow \\
\{\{ P' \}\}
\end{array}
\]