Solutions
1. [Standard Only] Coq Programming: Types (12 points)

For each of the following Coq terms, write its type or write “ill-typed” if it is not well typed.

(a) fun (n:nat) => n + 1
 Answer: nat -> nat

(b) fun (n:nat) => fun (P:prop) => P n
 Answer: Ill typed

(c) fun (P:nat -> Prop) => forall (m:nat), P m
 Answer: (nat -> Prop) -> Prop
 The typing questions below use these definitions taken from Maps.v:

 Inductive id : Type :=
 | Id : nat -> id.

 Definition total_map (A:Type) := id -> A.

 Definition partial_map (A:Type) := total_map (option A).

 Definition empty {A:Type} : partial_map A :=
 t_empty None.

 Definition t_update {A:Type} (m : total_map A) (x : id) (v : A) :=
 fun x' => if beq_id x x' then v else m x'.

(d) partial_map total_map
 Answer: Ill typed

(e) partial_map (nat -> nat)
 Answer: Type

(f) t_update empty (Id 0) (Some Id)
 Answer: id -> option (nat -> id)
2. [Advanced Only] Coq Programming (8 points)

(a) What is the type of the following Coq term? Write “ill typed” if it is not well typed.

\[
\text{fun } n \rightarrow (\exists x, x < n)
\]

\textit{Answer: nat -> Prop}

(b) What is the type of the following Coq term? Write “ill typed” if it is not well typed.

\[
\text{fun } P \rightarrow \text{fun } n \rightarrow \text{fun } (x:P(n+1)) \rightarrow (P\ n)
\]

\textit{Answer: forall (P : nat -> Type) (n : nat), P (n + 1) -> Type}

Consider the following (well-typed) Coq program:

\[
\text{Fixpoint foo } (n \text{:nat}) :=
\begin{align*}
\text{match } n \text{ with} \\
\mid 0 \Rightarrow \text{fun } y \text{:nat} \Rightarrow y = 0 \\
\mid S m \Rightarrow \text{fun } y \text{:nat} \Rightarrow
\begin{align*}
\text{match } y \text{ with} \\
\mid 0 \Rightarrow \text{True} \\
\mid S l \Rightarrow \text{foo } m \ l
\end{align*}
\end{align*}
\]

\textit{end}.

(c) What is the type of \textit{foo}?

\textit{Answer: nat -> nat -> Prop}

(d) Which of the following lemmas can you prove to characterize \textit{foo}? (Choose one.)

\begin{itemize}
\item □ forall n m, n = m <-> foo m n
\item □ forall n m, n < m <-> foo m n
\item □ forall n m, m < n <-> foo m n
\item ✖ forall n m, n <= m <-> foo m n
\item □ forall n m, m <= n <-> foo m n
\end{itemize}
3. **Imp Semantics** (18 points)

The Appendix contains the definitions of the syntax, large-step operational semantics, and *program equivalence* as defined by the `cequiv` relation for Imp programs. Multiple choice: mark all correct answers. There may be zero or more than one!

(a) (3 pts.) Consider the Imp program:

```imp
Y ::= 0;;
WHILE X > 0 DO
  Y ::= Y + 2;;
  X ::= X - 1;;
DONE
```

Which of the following programs are equivalent to it, according to `cequiv`?

i. `Y ::= X * 2;;`
ii. `IF X = 2 THEN`
iii. `WHILE Y <> (2 * X) DO`

 X ::= 0;
 Y ::= 4;;
 Y ::= 2 * X;;
 X ::= 0
 ELSE
 DONE;;
 FI

Answer: Just i.

(b) (3 pts.) Consider the Imp program:

```imp
IF X > Y THEN
  WHILE True DO SKIP DONE
ELSE
  X ::= X - Y;;
FI
```

Which of the following programs are equivalent to it, according to `cequiv`?

i. `X ::= 0`
ii. `IF X <= Y THEN`
iii. `WHILE (X - Y) > 0 DO`

 X ::= 0
 WHILE True DO SKIP DONE
 X ::= 0
 FI

Answer: ii. and iii.

(c) (4 pts.) Which of the following choices of commands `c` are such that `c ;; c` is equivalent to just `c` (according to `cequiv`)?

i. `SKIP`
ii. `WHILE True DO`
iii. `X ::= Y;;`
iv. `IF X = 0 THEN`

 X ::= X+1
 Y ::= X;;
 DONE
 ELSE
 X ::= X - 1;;
 FI

Answer: i. and ii. and iii.
Suppose we extend Imp with the command \texttt{CALL} that lets us call a Coq-level function from within an Imp program:

\begin{verbatim}
Inductive com : Type := ...
 | CCall : (state -> state) -> com. (* <---- new *)

Notation "'CALL' f" := (CCall f) (at level 60).

Inductive ceval : com -> state -> state -> Prop := ...
 | E_Call : forall (st : state) (f:state -> state),
 (CALL f) / st \ (f st) (* <---- run f on st *)
\end{verbatim}

Here is a simple example of how it can be used to implement a function that zeros-out the state, and a lemma that shows what the \texttt{reset} function does:

\begin{verbatim}
Definition reset (st:state) : state := empty_state.

Lemma call_example : forall st,
 (X ::= 1;; Y ::= 2;; Z ::= 3;; CALL reset) / st \ empty_state.
\end{verbatim}

(d) (4 pts.) Is it possible to create an Imp command \texttt{c}, that \textit{does not use \texttt{CALL}}, but such that \texttt{c} is equivalent to the program \texttt{CALL reset}? Briefly justify your answer.

\textit{Answer:} No, it is not possible. Such a program would have to assign to all identifiers in the state, but no finite Imp program can do that (even using a \texttt{WHILE} loop).

(e) (4 pts.) Give an example Imp command \texttt{c} that \textit{cannot} be implemented as a Coq function \texttt{f : state -> state} (i.e. such that \texttt{c} and \texttt{CALL f} are equivalent).

\textit{Answer:} \texttt{c = WHILE True DO SKIP DONE} (or any looping program)
4. **Hoare Logic: Decorated Programs** (16 points)

Consider the following Imp program that computes \(m \times n \) and places the answer in \(Z \)

Add appropriate annotations to the program in the provided spaces to show that the Hoare triple given by the outermost pre- and post-conditions is valid. The provided blanks have been constructed so that, if you work backwards from the end of the program, you should only need to use the rule of consequence in the places indicated with >>. The Appendix contains a list of all the Hoare rules and the rules for decorated programs.

We have given you the outer-loop’s invariant.

\[
\begin{align*}
\{ X = m \} & \implies \ \{ 0 = (m-X) \times n \land X \leq m \} \\
Z & ::= 0 ;; \\
\{ Z = (m-X) \times n \land X \leq m \} \\
\text{WHILE } X < 0 \text{ DO} & \ \ { Z = (m-X) \times n \land X \leq m \land X > 0 } \implies \ \{ Z = (m-X) \times n + (n-n) \land X \leq m \} \\
W & ::= n ;; \\
\{ Z = (m-X) \times n + (n-W) \land X \leq m \land W \leq n \} \\
\text{WHILE } W < 0 \text{ DO} & \ \ { Z = (m-X) \times n + (n-W) \land X \leq m \land W = n } \implies \ \{ Z = (m-X) \times n + (n-(W-1)) \land X \leq m \land W-1 \leq n \} \\
Z & ::= Z + 1 ;; \\
\{ Z = (m-X) \times n + (n-W) \land X \leq m \land W = n \land W > 0 \} \implies \ \{ Z = (m-X) \times n + (n-(W-1)) \land X \leq m \land W-1 \leq n \} \\
W & ::= W - 1 \\
\{ Z = (m-X) \times n + (n-W) \land X \leq m \land W = n \} \\
\text{END };; \\
\{ Z = (m-X) \times n + (n-W) \land X \leq m \land W = n \land W < 0 \} \implies \ \{ Z = (m-(X-1)) \times n \land X \leq m \} \\
X & ::= X - 1 \\
\{ Z = (m-X) \times n \land X \leq m \} \\
\text{END } \\
\{ Z = (m-X) \times n \land X \leq m \land \neg (X > 0) \} \implies \ \{ Z = m \times n \}
\end{align*}
\]
5. **[Standard Only] Simply-typed Lambda Calculus** (18 points)

The syntax, operational semantics, and typing rules for the simply-typed lambda calculus with booleans is given in the Appendix. Here we *do not* consider products or subtyping.

For each variant below, indicate which of the properties of the STLC remain true in the presence of this rule? For each one, write either "remains true" or else "becomes false." If a property becomes false, give a counterexample.

(a) Consider a variant of the STLC in which we add a new term `loop` with the following reduction and typing rules:

\[
\begin{align*}
\text{(ST_Loop)} & : \quad \text{loop} \Rightarrow \text{loop} \\
\text{(T_Loop)} & : \quad \Gamma \vdash \text{loop} \in T
\end{align*}
\]

- **Determinism of \(\Rightarrow\)**
 Remains true. Each term has at most one rule that applies.

- **Progress**
 Remains true. Every well-typed term can still take a step, as can `loop`

- **Preservation**
 Remains true. `loop` can have any type.

(b) Suppose instead that we add the following typing rule:

\[
\begin{align*}
\Gamma \vdash t_1 \in \text{U \rightarrow T} \\
\text{(T_App')} & : \quad \Gamma \vdash t_1 \ t_2 \in T
\end{align*}
\]

- **Determinism of \(\Rightarrow\)**
 Remains true.

- **Progress**
 Remains true.

- **Preservation**
 Becomes false: \((\lambda x: \text{Bool\rightarrow Bool}. \ x \ \text{true}) \ \text{true}\) can be given the type `Bool` but it steps to `true true` which is ill-typed. (The substitution lemma does not apply.)
(c) Instead, suppose that we add a new term $\text{guess } T$ (where T is a type) with the following reduction rule:

\[
\text{------------- (ST_GArr) }\\
\text{guess } (T \to U) \Rightarrow \ \lambda x : T. \ \text{guess } U
\]

and the following typing rule:

\[
\text{------------- (T_Guess) }\\
\Gamma \vdash \text{guess } T \in T
\]

- Determinism of \Rightarrow
 Remains true.
- Progress
 Becomes false. The term $\text{guess } \text{Bool}$ is stuck.
- Preservation
 Remains true.
6. [Advanced Only] Informal Proof for STLC (22 points)

In this problem we consider only the simply typed lambda calculus with booleans (in particular there is no subtyping and you can ignore product types). Give an informal proof of the substitution lemma (stated further down).

Let us write \(FV(t) \) for the set of free variables that occur in \(t \). You will need to use the following lemma (which you may assume as given) in the proof:

Context invariance If \(\Gamma \vdash t \in T \) and \((\forall x, x \in FV(t) \rightarrow \Gamma(x) = \Gamma'(x)) \) then \(\Gamma' \vdash t \in T \).

Substitution If \(\Gamma, x : T \vdash t \in U \) and \(\vdash v \in T \) then \(\Gamma \vdash [x := v]t \in U \).

Answer: See the solution in the Software Foundations text.
7. Simply-typed Lambda Calculus (20 points)

In this problem, we consider an alternate formulation of the small-step operational semantics for the simply-typed lambda calculus with booleans (without subtyping and no products until part (d)).

One annoying thing about the operational semantics is the number of “structural” rules (ST_App1, ST_App2, ST_If) that we have to deal with. (It’s even worse when we consider products, but we’re leaving them out for simplicity here.)

An alternate formulation of the operational semantics is to give a syntax of “evaluation contexts” E of type ectx and “primitive steps” s which are just particular terms like this:

\[
(* \text{ Evaluation contexts } E : \text{ectx } *)
(* \text{ prim_step : } \text{tm } \rightarrow \text{Prop } *)
\]

\[
E ::= [] (* \text{ hole } *)
| E t (* \text{ ST_App1 } *)
| v E (* \text{ ST_App2 } *)
| \text{ if } E \text{ then } t1 \text{ else } t2 (* \text{ ST_If } *)
\]

Here we use “informal” syntax rather than Coq constructors to make it simpler to write examples. We also use the convention the v stands for a term that is a value. The idea is that E describes a term with a single “hole” [] in it, into which we can place an arbitrary term. We define the function that fills the hole by pattern matching on the E like this:

\[
\text{Fixpoint fill (t:tm) (E:ectx) : tm :=}
\]

\[
\text{match E with}
\]

\[
| [] => t
| E t1 => ((fill t E) t1)
| v E => (v (fill t E))
| \text{ if } E \text{ then } t1 \text{ else } t2 => \text{ if } (fill t E) \text{ then } t1 \text{ else } t2
\]

end.

Each non-hole E corresponds to one of the structural rules, which lets us use one evaluation rule E_Hole for all of them. We also include one rule for each primitive step, like this:

\[
s ==> t \\
(\text{x:T.t v} ==> [x:=v]t) \quad (\text{ST_AppAbs})
\]

\[
\text{--------------------- (ST_Hole)}
\]

\[
\text{fill s E} ==> \text{fill t E}
\]

\[
\text{if true then t1 else t2} ==> t1 \quad (\text{ST_IfTrue})
\]

\[
\text{if false then t1 else t2} ==> t2 \quad (\text{ST_IfFalse})
\]

These rules replace the old definition of the small-step semantics.

There are no questions on this page.
If we use these evaluation contexts to prove soundness, we need a couple different helper lemmas.

(a) (3 pts.) The first lemma says that we can always decompose a well-typed term if it is not a value:

Lemma decompose : forall (t:tm) (T:ty),
\(\vdash t : T \rightarrow \)
value t \(\lor \)
exists (E:ectx), exists (s:tm), (prim_step s) \(\land \) t = fill s E.

The proofs of which of the following would directly require this decompose lemma?
(If A needs B and B needs the lemma, mark only B.)

- ☐ canonical forms
- ☐ preservation
- ☑ progress
- ☐ context invariance
- ☐ substitution

(b) (4 pts.) We also need a kind of substitution lemma that relates to fill. A bad attempt at stating it might be something like this:

Lemma ectx_substitution: forall (E:ectx) (x:id) (T U:ty) (t:tm) \(\Gamma, \]
\(\Gamma, x:T \vdash (\text{fill } x \ E) \in U \rightarrow \)
\(\vdash t \in T \rightarrow \)
\(\Gamma \vdash (\text{fill } t \ E) \in U. \)

Unfortunately, the lemma above is not provable (indeed it is false!). Briefly explain why.
Answer: The context E itself might contain x as a free variable and so it won’t be well-typed when we remove x from the context.
(c) (3 pts.) A better way to state the substitution principal is:

\[
\text{Lemma ectx_substitution: } \forall (E:\text{ctx}) \ (T:\text{ty}) \ (s \ t:\text{tm}) \ \Gamma, \\
\Gamma \vdash (\text{fill~} s E) \in U \rightarrow (* \text{Hyp1} *)
\]

\[
\vdash s \in T \rightarrow (* \text{Hyp2} *)
\]

\[
\vdash t \in T \rightarrow (* \text{Hyp3} *)
\]

\[
\Gamma \vdash (\text{fill~} t E) \in U.
\]

It would be easiest to prove this fact by induction on which of the following? (Choose one.)

\[\begin{array}{cccc}
\checkmark & E & \square & T \\
\square & t & \square & \text{Hyp1} \\
\square & \text{Hyp2} & \square & \text{Hyp3}
\end{array}\]

(d) (4 pts.) Following the development above, what would you add to the definition of \(E\) to support products? (The usual rules for products are given in the appendix.) (You may need to add more than one clause.)

\[
E ::= \ldots \\
| \\
E ::= \ldots \\
| (E, t) \\
| (v, E) \\
| E.\text{fst} \\
| E.\text{snd}
\]

(e) It is also possible to use evaluation contexts to implement other language features. Here we add a new expression \(\text{halt}\), which halts the program.

\[
E <> [] \\
----------------------- \ (\text{ST_Halt})
\]

\[
\text{fill~} \text{halt} \ E \Rightarrow \text{halt}
\]

i. (2 pts.) What does the following term step to in one step (\(\Rightarrow\))?

\[
\text{if} \ (\lambda x: \text{Bool}. x) \ \text{halt} \ \text{then~} \text{false} \ \text{else~} \text{true}
\]

\[\begin{array}{cccc}
\checkmark & \text{true} \\
\square & \text{false} \\
\checkmark & \text{halt} \\
\square & (\lambda x: \text{Bool}. x) \ \text{halt} \\
\square & \text{if~} \text{halt} \ \text{then~} \text{false} \ \text{else~} \text{true}
\end{array}\]

ii. (4 pts.) What should the typing rule for \(\text{halt}\) be to ensure type safety?

\[
\Gamma \vdash \text{halt} \in T
\]
8. **Subtyping** (16 points)

In this problem we consider the simply typed lambda calculus with booleans, pairs, and subtyping. The syntax, operational semantics, and typing rules are given in the Appendix.

Recall that this language already includes the type Top, which is a supertype of all other types, as indicated by this subtyping rule:

\[
\begin{array}{l}
\hline
\text{S <: Top} \\
\hline
\end{array}
\]

In this problem we consider the implications of adding a new type Bot (for “bottom”), which is a subtype of all others:

\[
\begin{array}{l}
\hline
\text{Bot <: S} \\
\hline
\end{array}
\]

Just as when we added Top, we leave the operational semantics and the typing rules unchanged.

(a) (3 pts.) For each of the following lemmas, indicate whether it is provable with the addition of Bot as described above:

- **Lemma sub_inversion_Bot** : $\forall U, U <: \text{Bot} \implies U = \text{Bot}$.
 - ☒ Provable
 - ☐ Not provable

- **Lemma sub_inversion_Bool** : $\forall U, U <: \text{Bool} \implies U = \text{Bool}$.
 - ☐ Provable
 - ☒ Not provable

- **Lemma canonical_forms_of_Bool** : $\forall s$, $\text{empty} \vdash s \in \text{Bool} \implies (s = \texttt{ttrue} \lor s = \texttt{tfalse})$.
 - ☒ Provable
 - ☐ Not provable

(b) (3 pts.) Recall that a term is closed if it has no free variables. Are there any closed values of type Bot? That is, can you find a value v such that:

\[
\text{empty} \vdash v : \text{Bot}
\]

If so, give an example. If not, briefly explain.

Answer: No. By induction on the possible typing derivation: there are no base-case values of type Bot, and subsumption would require a T such that $T <: \text{Bot}$, but (again by induction) in that case $T = \text{Bot}$.
(c) (5 pts.) For each pair of types T and S given below, indicate whether $T <: S$, $S <: T$, or T and S are incomparable (that is, not related by $<:$).

- $T = (\text{Bot} \times \text{Top})$ \quad $S = (\text{Bot} \times \text{Bool})$
 - $T <: S$ \quad $S <: T$ \quad incomparable

- $T = \text{Bool} \to \text{Bool}$ \quad $S = \text{Top} \to \text{Bot}$
 - $T <: S$ \quad $S <: T$ \quad incomparable

- $T = \text{Bool} \to \text{Top}$ \quad $S = \text{Bot} \to \text{Bot}$
 - $T <: S$ \quad $S <: T$ \quad incomparable

- $T = (\text{Bot} \to \text{Top}) \to \text{Bool}$ \quad $S = (\text{Top} \to \text{Bot}) \to \text{Top}$
 - $T <: S$ \quad $S <: T$ \quad incomparable

- $T = \text{Bool} \to (\text{Top} \times \text{Bot})$ \quad $S = \text{Bot} \to (\text{Bot} \times \text{Top})$
 - $T <: S$ \quad $S <: T$ \quad incomparable

(d) (5 pts.) Consider the following program:

```
empty ⊢ (\!\!x:T. x x) : T → Bot
```

Which of the following types T allow the above program to be well-typed? That is, for which of the following choices of T does there exists a typing derivation with the conclusion above?

- $T = \text{Bool} \to \text{Bool}$
- $T = \text{Bot}$
- $T = \text{Top}$
- $T = \text{Top} \to \text{Bot}$
- $T = (\text{Bot} \to \text{Bool}) \to \text{Bot}$
Formal definitions for Imp

Syntax

Inductive aexp : Type := | ANum : nat -> aexp | AId : id -> aexp |
APlus : aexp -> aexp -> aexp | AMinus : aexp -> aexp -> aexp | AMult :
aexp -> aexp -> aexp.

Inductive bexp : Type :=
| BTrue : bexp
| BFalse : bexp
| BEq : aexp -> aexp -> bexp
| BLe : aexp -> aexp -> bexp
| BNot : bexp -> bexp
| BAnd : bexp -> bexp -> bexp.

Inductive com : Type :=
| CSkip : com
| CAss : id -> aexp -> com
| CSeq : com -> com -> com
| CIf : bexp -> com -> com -> com
| CWhile : bexp -> com -> com.

Notation "'SKIP'" :=
CSkip.

Notation "l '::=' a" :=
(CAss l a) (at level 60).

Notation "c1 ;; c2" :=
(CSeq c1 c2) (at level 80, right associativity).

Notation "'WHILE' b 'DO' c 'END'" :=
(CWhile b c) (at level 80, right associativity).

Notation "'IFB' e1 'THEN' e2 'ELSE' e3 'FI'" :=
(CIf e1 e2 e3) (at level 80, right associativity).
Evaluation relation

\[
\begin{align*}
\text{Inductive } \text{ceval} : \text{com} -> \text{state} -> \text{state} -> \text{Prop} := \\
& \text{E_Skip } : \text{forall } \text{st}, \\
& \quad \text{SKIP / st || st} \\
& \text{E_Ass } : \text{forall } \text{st } \text{a1 n X}, \\
& \quad \text{aeval st a1 = n ->} \\
& \quad \quad (X := a1) / st || (\text{update st X n}) \\
& \text{E_Seq } : \text{forall } \text{c1 c2 st' st''}, \\
& \quad \text{c1 / st || st' ->} \\
& \quad \quad \text{c2 / st' || st'' ->} \\
& \quad \quad (\text{c1 ; ; c2) / st || st''} \\
& \text{E_IfTrue } : \text{forall } \text{st st' b1 c1 c2}, \\
& \quad \text{beval st b1 = true ->} \\
& \quad \quad \text{c1 / st || st' ->} \\
& \quad \quad \quad (\text{IFB b1 THEN c1 ELSE c2 FI) / st || st'} \\
& \text{E_IfFalse } : \text{forall } \text{st st' b1 c1 c2}, \\
& \quad \text{beval st b1 = false ->} \\
& \quad \quad \text{c2 / st || st' ->} \\
& \quad \quad \quad (\text{IFB b1 THEN c1 ELSE c2 FI) / st || st'} \\
& \text{E_WhileEnd } : \text{forall } \text{b1 st c1}, \\
& \quad \text{beval st b1 = false ->} \\
& \quad \quad \quad (\text{WHILE b1 DO c1 END) / st || st} \\
& \text{E_WhileLoop } : \text{forall } \text{st st' st'' b1 c1}, \\
& \quad \text{beval st b1 = true ->} \\
& \quad \quad \quad \text{c1 / st || st' ->} \\
& \quad \quad \quad \quad (\text{WHILE b1 DO c1 END) / st' || st'' ->} \\
& \quad \quad \quad \quad \quad (\text{WHILE b1 DO c1 END) / st || st''} \\
\end{align*}
\]

where "c1 '/' st '||' st'" := (ceval c1 st st').

Program equivalence

\[
\text{Definition bequiv (b1 b2 : bexp) : Prop :=} \\
\quad \text{forall (st:state), beval st b1 = beval st b2.}
\]

\[
\text{Definition cequiv (c1 c2 : com) : Prop :=} \\
\quad \text{forall (st st' : state),} \\
\quad \quad \quad (c1 / st || st') <-> (c2 / st || st').
\]

Hoare triples

\[
\text{Definition hoare_triple (P:Assertion) (c:com) (Q:Assertion) : Prop :=} \\
\quad \text{forall st st', c / st || st' -> P st -> Q st'.}
\]

\[
\text{Notation "{{ P } c {{ Q }}" := (hoare_triple P c Q).}
\]
Implication on assertions

Definition assert_implies (P Q : Assertion) : Prop :=
 forall st, P st -> Q st.

Notation "P ->> Q" := (assert_implies P Q) (at level 80).

(ASCII ->> is typeset as a hollow arrow in the rules below.)

Hoare logic rules

\forall \text{assn_sub } X a \ Q X := a \ Q \quad \text{(hoare_asgn)}

\frac{\{ P \} \text{SKIP} \{ P \}}{} \quad \text{(hoare_skip)}

\frac{\{ P \} \ c_1 \ { Q \} \quad \{ Q \} \ c_2 \ { R \}}{\{ P \} \ c_1; \ c_2 \ { R \}} \quad \text{(hoare_seq)}

\frac{\{ P \land b \} \ c_1 \ { Q \} \quad \{ P \land \neg b \} \ c_2 \ { Q \} }{\{ P \} \ \text{IFB b THEN c1 ELSE c2 FI} \ { Q \}} \quad \text{(hoare_if)}

\frac{\{ P \land b \} \ c \ { P \} \quad \{ P \} \ \text{WHILE b DO c END} \ { P \land \neg b \} }{\{ P \} \ \text{WHILE b DO c END} \ { P \land \neg b \} } \quad \text{(hoare_while)}

\frac{\{ P' \} \ c \ { Q' \} \quad P \rightarrow P' \quad Q' \rightarrow Q}{\{ P \} \ c \ { Q \}} \quad \text{(hoare_consequence)}

\frac{\{ P' \} \ c \ { Q \} \quad P \rightarrow P'}{\{ P \} \ c \ { Q \}} \quad \text{(hoare_consequence_pre)}

\frac{\{ P \} \ c \ { Q' \} \quad Q' \rightarrow Q}{\{ P \} \ c \ { Q \}} \quad \text{(hoare_consequence_post)}
Decorated programs

1. SKIP is locally consistent if its precondition and postcondition are the same:

\[
\begin{align*}
\{\{ P \}\} \\
\text{SKIP} \\
\{\{ P \}\}
\end{align*}
\]

2. The sequential composition of \(c_1\) and \(c_2\) is locally consistent (with respect to assertions \(P\) and \(R\)) if \(c_1\) is locally consistent (with respect to \(P\) and \(Q\)) and \(c_2\) is locally consistent (with respect to \(Q\) and \(R\)):

\[
\begin{align*}
\{\{ P \}\} \\
c_1;; \\
\{\{ Q \}\} \\
c_2 \\
\{\{ R \}\}
\end{align*}
\]

3. An assignment is locally consistent if its precondition is the appropriate substitution of its postcondition:

\[
\begin{align*}
\{\{ P [X \rightarrow a]\}\} \\
X := a \\
\{\{ P \}\}
\end{align*}
\]

4. A conditional is locally consistent (with respect to assertions \(P\) and \(Q\)) if the assertions at the top of its "then" and "else" branches are exactly \(P \land b\) and \(P \land \lnot b\) and if its "then" branch is locally consistent (with respect to \(P \land b\) and \(Q\)) and its "else" branch is locally consistent (with respect to \(P \land \lnot b\) and \(Q\)):

\[
\begin{align*}
\{\{ P \}\} \\
\text{IFB b THEN} \\
\{\{ P \land b \}\} \\
c_1 \\
\{\{ Q \}\} \\
\text{ELSE} \\
\{\{ P \land \lnot b \}\} \\
c_2 \\
\{\{ Q \}\} \\
\text{FI} \\
\{\{ Q \}\}
\end{align*}
\]
5. A while loop with precondition P is locally consistent if its postcondition is $P \land \lnot b$ and if the pre- and postconditions of its body are exactly $P \land b$ and P:

\[
\{\{ P \}\} \\
\text{WHILE } b \text{ DO} \\
\{\{ P \land b \}\} \\
\text{c1} \\
\{\{ P \}\} \\
\text{END} \\
\{\{ P \land \lnot b \}\}
\]

6. A pair of assertions separated by $\rightarrow\rightarrow$ is locally consistent if the first implies the second (in all states):

\[
\{\{ P \}\} \rightarrow\rightarrow \\
\{\{ P' \}\}
\]

Relations

Definition relation (X: Type) := X->X->Prop.

Inductive multi {X:Type} (R: relation X) : relation X :=
| multi_refl : forall (x : X), multi R x x
| multi_step : forall (x y z : X),
 R x y ->
 multi R y z ->
 multi R x z.

Notation " t '==>*' t' " := (multi step t t') (at level 40).
STLC with booleans

Syntax

<table>
<thead>
<tr>
<th>T ::= Bool</th>
<th>t ::= x</th>
<th>v ::= true</th>
</tr>
</thead>
<tbody>
<tr>
<td>T -> T</td>
<td>t t</td>
<td>false</td>
</tr>
<tr>
<td>\x:T. t</td>
<td>\x:T. t</td>
<td></td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td></td>
</tr>
<tr>
<td>if t then t else t</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Small-step operational semantics

value v2

\((\\lambda x:T . t) \ v2 \Rightarrow [x:=v2] \ t \)

(\ST_{AppAbs})

(\ ST_{App1})

value v1

t1 t2 \Rightarrow t1' t2

(\ST_{App2})

(\ ST_{IfTrue})

(\ ST_{IfFalse})

(\ST_{If})

(\ if \ true \ then \ t1 \ else \ t2 \) \Rightarrow \ t1

(\ if \ false \ then \ t1 \ else \ t2 \) \Rightarrow \ t2

(\ if \ t1 \ then \ t2 \ else \ t3 \) \Rightarrow \ (\ if \ t1' \ then \ t2 \ else \ t3 \)
Typing

\[\Gamma \vdash x = T \quad \text{------------- (T_Var)} \]
\[\Gamma, x : T_{11} \vdash t_{12} \in T_{12} \quad \text{------------------------------- (T_Abs)} \]
\[\Gamma \vdash \lambda x : T_{11}. t_{12} \in T_{11} \rightarrow T_{12} \]
\[\Gamma \vdash t_{1} \in T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_{2} \in T_{11} \quad \text{---------------------- (T_App)} \]
\[\Gamma \vdash t_{1} \; t_{2} \in T_{12} \]
\[\Gamma \vdash \text{true} \in \text{Bool} \quad \text{-------------------------- (T_True)} \]
\[\Gamma \vdash \text{false} \in \text{Bool} \quad \text{------------------- (T_False)} \]
\[\Gamma \vdash t_{1} \in \text{Bool} \quad \Gamma \vdash t_{2} \in T \quad \Gamma \vdash t_{3} \in T \quad \text{--- (T_If)} \]
\[\Gamma \vdash \text{if } t_{1} \text{ then } t_{2} \text{ else } t_{3} \in T \]

Properties of STLC

Theorem preservation: \(\forall t \; t' \; T, \)
\[\text{empty} \vdash t \in T \rightarrow \]
\[\text{empty} \vdash t' \rightarrow \]
\[\text{value } t \nexists t', t \rightarrow t'. \]

Theorem progress: \(\forall t \; T, \)
\[\text{empty} \vdash t \in T \rightarrow \]
\[\text{value } t \nexists t', t \rightarrow t'. \]
STLC with products

Extend the STLC with product types, terms, projections, and pair values:

\[T ::= \ldots \mid T \times T \mid t.fst \mid t.snd \]
\[t ::= \ldots \mid (t,t) \mid (v, v) \]
\[v ::= \ldots \]

Small-step operational semantics (added to STLC rules)

\[t1 ==> t1' \]
\[\begin{array}{c}
\text{------------------ (ST_Pair1)} \\
(t1,t2) ==> (t1',t2)
\end{array} \]

\[t2 ==> t2' \]
\[\begin{array}{c}
\text{------------------ (ST_Pair2)} \\
(v1,t2) ==> (v1,t2')
\end{array} \]

\[t1 ==> t1' \]
\[\begin{array}{c}
\text{------------------ (ST_Fst1)} \\
t1.fst ==> t1'.fst
\end{array} \]
\[\text{------------------ (ST_FstPair)} \]
\[(v1,v2).fst ==> v1 \]

\[t1 ==> t1' \]
\[\begin{array}{c}
\text{------------------ (ST_Snd1)} \\
t1.snd ==> t1'.snd
\end{array} \]
\[\text{------------------ (ST_SndPair)} \]
\[(v1,v2).snd ==> v2 \]

Typing (added to STLC rules)

\[\Gamma \vdash t1 \in T1 \quad \Gamma \vdash t2 \in T2 \]
\[\begin{array}{c}
\text{--------------------------------------- (T_Pair)} \\
\Gamma \vdash (t1,t2) \in T1 \times T2
\end{array} \]

\[\Gamma \vdash t1 \in T11 \times T12 \]
\[\begin{array}{c}
\text{--------------------- (T_Fst)} \\
\Gamma \vdash t1.fst \in T11
\end{array} \]

\[\Gamma \vdash t1 \in T11 \times T12 \]
\[\begin{array}{c}
\text{--------------------- (T_Snd)} \\
\Gamma \vdash t1.snd \in T12
\end{array} \]
Subtyping

Extend the language above with the type Top (terms and values remain unchanged):

\[T ::= \ldots \]
\[\mid \text{Top} \]

Add these rules that characterize the subtyping relation:

\[
\begin{align*}
S &<: U & U &<: T \\
\text{(S_Trans)}
\end{align*}
\]

\[
\begin{align*}
S &<: T \\
\text{(S_Refl)}
\end{align*}
\]

\[
\begin{align*}
T &<: T \\
\text{(S_Top)}
\end{align*}
\]

\[
\begin{align*}
S1 &<: T1 & S2 &<: T2 \\
\text{(S_Prod)}
\end{align*}
\]

\[
\begin{align*}
S1 * S2 &<: T1 * T2 \\
\text{(S_Arrow)}
\end{align*}
\]

Typing (added to STLC with products)

All of the ordinary typing rules, plus:

\[
\begin{align*}
\Gamma &\vdash t \in S & S &<: T \\
\text{(T_Sub)}
\end{align*}
\]