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Chapter 1

RAM Programs, Turing Machines,

and the Partial Computable Functions

In this chapter we address the fundamental question

What is a computable function?

Nowadays computers are so pervasive that such a ques-
tion may seem trivial.

Isn’t the answer that a function is computable if we can
write a program computing it!

This is basically the answer so what more can be said
that will shed more light on the question?
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The first issue is that we should be more careful about
the kind of functions that we are considering.

Are we restricting ourselves to total functions or are we
allowing partial functions that may not be defined for
some of their inputs?

It turns out that if we consider functions computed by
programs, then partial functions must be considered.

In fact, we will see that “deciding” whether a program
terminates for all inputs is impossible. But what does
deciding mean?

To be mathematically precise requires a fair amount of
work.
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One of the key technical points is the ability to design a
program U that takes other programs P as input, and
then executes P on any input x. In particular, U should
be able to take U itself as input!

Of course a compiler does exactly the above task.

But fully describing a compiler for a “real” programming
language such as JAVA, PYTHON, C++, etc. is a com-
plicated and lengthy task.

So a simpler (still quite complicated) way to proceed is to
develop a toy programming language and a toy computa-
tion model (some kind of machine) capable of executing
programs written in our toy language.
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Then we show how programs in this toy language can
be coded so that they can be given as input to other
programs.

Having done this we need to demonstrate that our lan-
guage has universal computing power . This means that
we need to show that a “real” program, say written in
JAVA, could be translated into a possibly much longer
program written in our toy language.

This step is typically an act of faith, in the sense that
the details that such a translation can be performed are
usually not provided.

A way to be precise regarding universal computing power
is to define mathematically a family of functions that
should be regarded as “obviously computable,” and then
to show that the functions computed by the programs
written either in our toy programming language or in any
modern progamming language are members of this math-
ematically defined family of computable functions.
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This step is usually technically very involved, because
one needs to show that executing the instructions of a
program can be mimicked by functions in our family of
computable functions.

Conversely, we should prove that every computable func-
tion in this family is indeed computable by a program
written in our toy programming language or in any mod-
ern progamming language.

Then we will be have the assurance that we have captured
the notion of universal computing power.

Remarkably, Herbrand, Gödel, and Kleene defined such
a family of functions in 1934-1935 .
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This is a family of numerical functions f : Nm ! N con-
taining a subset of very simple functions called base func-
tions, and this family is the smallest family containing
the base functions closed under three operations:

1. Composition

2. Primitive recursion

3. Minimization.

Historically, the first two models of computation are the
�-calculus of Church (1935) and the Turing machine
(1936) of Turing.

Kleene proved that the �-definable functions are exactly
the (total) computable functions in the sense of Herbrand–
Gödel–Kleene in 1936, and Turing proved that the func-
tions computed by Turing machines are exactly the com-
putable functions in the sense of Herbrand–Gödel–Kleene
in 1937.
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Therefore, the �-calculus and Turing machines have the
same “computing power,” and both compute exactly the
class of computable functions in the sense of Herbrand–
Gödel–Kleene.

In those days these results were considered quite surpris-
ing because the formalism of the �-calculus has basically
nothing to do with the formalism of Turing machines.

Once again we should be more precise about the kinds of
functions that we are dealing with.

Until Turing (1936), only numerical functions f : Nm !
N were considered.

In order to compute numerical functions in the �-calculus,
Church had to encode the natural numbers as certain �-
terms, which can be viewed as iterators.
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Turing assumes that what he calls his a-machines (for
automatic machines) make use of the symbols 0 and 1
for the purpose of input and output, and if the machine
stops, then the output is a string of 0s and 1s.

Thus a Turing machine can be viewed as computing a
function f : ({0, 1}⇤)m ! {0, 1}⇤ on strings .

By allowing a more general alphabet ⌃, we see that a
Turing machine computes a function f : (⌃⇤)m ! ⌃⇤ on
strings over ⌃.

At first glance it appears that Turing machines compute
a larger class of functions, but this is not so because
there exist mutually invertible computable coding func-
tions C : ⌃⇤ ! N and decoding functions D : N! ⌃⇤.
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Using these coding and decoding functions, it su�ces to
consider numerical functions.

However, Turing machines can also very naturally be
viewed as devices for defining computable languages in
terms of acceptance and rejection; some kinds of general-
ized DFA’s or NFA’s.

In this role, it would be very awkward to limit ourselves
to sets of natural numbers, although this is possible in
theory.

We should also point out that the notion of computable
language can be handled in terms of a computation model
for functions by considering the characteristic functions
of languages.

Indeed, a language A is computable (we say decidable)
i↵ its characteristic function �A is computable.
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The above considerations motivate the definition of the
computable functions in the sense of Herbrand–Gödel–
Kleene to functions f : (⌃⇤)m ! ⌃⇤ operating on strings .

However, it is technically simpler to work out all the un-
decidability results for numerical functions or for subsets
of N.

Since there is no loss of generally in doing so in view of
the computable bijections C : ⌃⇤ ! N and D : N! ⌃⇤,
we will do so.

Nevertherless, in order to deal with languages, it is im-
portant to develop a fair amount of computability theory
about functions computing on strings, so we will present
another computation model, the RAM program model ,
which computes functions defined on strings.
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This model was introduced around 1963 (although it was
introduced earlier by Post in a di↵erent format). It has
the advantage of being closer to actual computer archi-
tecture, because the RAM model consists of programs
operating on a fixed set of registers.

This model is equivalent to the Turing machine model,
and the translations, although tedious, are not that bad.

The RAM program model also has the technical advan-
tage that coding up a RAM program as a natural number
is not that complicated.
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The �-calculus is a very elegant model but it is more
abstract than the RAM program model and the Turing
machine model so we will not discuss it in this course.

Another very interesting computation model particularly
well suited to deal with decidable sets of natural numbers
is Diophantine definability .

This model, arising from the work involved in proving
that Hilbert’s tenth problem is undecidable, will be dis-
cussed in Chapter 6.
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1.1 Partial Functions and RAM Programs

We define an abstract machine model for computing func-
tions

f : ⌃⇤ ⇥ · · ·⇥ ⌃⇤| {z }
n

! ⌃⇤,

where ⌃ = {a1, . . . , ak} is some input alphabet.

Numerical functions f : Nn ! N can be viewed as func-
tions defined over the one-letter alphabet {a1}, using the
bijection m 7! am

1 .

Since programs are not guaranteed to terminate for all
inputs, we are forced to deal with partial functions so we
recall their definition.
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A binary relation R ✓ A⇥B between two sets A and B
is functional i↵, for all x 2 A and y, z 2 B,

(x, y) 2 R and (x, z) 2 R implies that y = z.

Definition 1.1. A partial function is a triple f =
hA, G, Bi, where A and B are arbitrary sets (possibly
empty) and G is a functional relation (possibly empty)
between A and B, called the graph of f .

Hence, a partial function is a functional relation such that
every argument has at most one image under f .

The graph of a function f is denoted as graph(f ). When
no confusion can arise, a function f and its graph are
usually identified.

A partial function f = hA, G, Bi is often denoted as
f : A! B.
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The domain dom(f ) of a partial function f = hA, G, Bi
is the set

dom(f ) = {x 2 A | 9y 2 B, (x, y) 2 G}.

For every element x 2 dom(f ), the unique element y 2 B
such that (x, y) 2 graph(f ) is denoted as f (x). We say
that f (x) is defined , also denoted as f (x) #.

If x 2 A and x /2 dom(f ), we say that f (x) is undefined ,
also denoted as f (x) ".

Intuitively, if a function is partial, it does not return any
output for any input not in its domain. This corresponds
to an infinite computation.

A partial function f : A ! B is a total function i↵
dom(f ) = A. It is customary to call a total function
simply a function.
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We now define a model of computation know as the RAM
programs , or Post machines .

RAM programs are written in a sort of assembly language
involving simple instructions manipulating strings stored
into registers.

Every RAM program uses a fixed and finite number of
registers denoted as R1, . . . , Rp, with no limitation on
the size of strings held in the registers.

RAM programs can be defined either in flowchart form or
in linear form. Since the linear form is more convenient
for coding purposes, we present RAM programs in linear
form.

A RAM program P (in linear form) consists of a finite
sequence of instructions using a finite number of registers
R1, . . . , Rp.
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Instructions may optionally be labeled with line numbers
denoted as N1, . . . , Nq.

It is neither mandatory to label all instructions, nor to
use distinct line numbers!

Thus, the same line number can be used in more than
one line. As we will see later on, this makes it easier to
concatenate two di↵erent programs without performing a
renumbering of line numbers.

Every instruction has four fields , not necessarily all used.
The main field is the op-code.
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Here is an example of a RAM program to concatenate
two strings x1 and x2.

R3  R1
R4  R2

N0 R4 jmpa N1b
R4 jmpb N2b

jmp N3b
N1 adda R3

tail R4
jmp N0a

N2 addb R3
tail R4
jmp N0a

N3 R1  R3
continue
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Definition 1.2. RAM programs are constructed from
seven types of instructions shown below:

(1j) N addj Y
(2) N tail Y
(3) N clr Y
(4) N Y  X
(5a) N jmp N1a
(5b) N jmp N1b
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue
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An instruction of type (1j) concatenates the letter aj to
the right of the string held by register Y (1  j  k).
The e↵ect is the assignment

Y := Y aj

An instruction of type (2) deletes the leftmost letter of
the string held by the register Y . This corresponds to the
function tail, defined such that

tail(✏) = ✏,

tail(aju) = u

for all u 2 ⌃⇤.

The e↵ect is the assignment

Y := tail(Y )
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An instruction of type (3) clears register Y , i.e., sets its
value to the empty string ✏. The e↵ect is the assignment

Y := ✏

An instruction of type (4) assigns the value of register X
to register Y . The e↵ect is the assignment

Y := X

An instruction of type (5a) or (5b) is an unconditional
jump.

The e↵ect of (5a) is to jump to the closest line number
N1 occurring above the instruction being executed, and
the e↵ect of (5b) is to jump to the closest line number
N1 occurring below the instruction being executed.
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An instruction of type (6ja) or (6jb) is a conditional jump.
Let head be the function defined as follows:

head(✏) = ✏,

head(aju) = aj

for all u 2 ⌃⇤.

The e↵ect of (6ja) is to jump to the closest line num-
ber N1 occurring above the instruction being executed
i↵ head(Y ) = aj, else to execute the next instruction
(the one immediately following the instruction being ex-
ecuted).

The e↵ect of (6jb) is to jump to the closest line num-
ber N1 occurring below the instruction being executed
i↵ head(Y ) = aj, else to execute the next instruction.

When computing over N, instructions of type (6ja) or
(6jb) jump to the closest N1 above or below i↵ Y is non-
null.
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An instruction of type (7) is a no-op, i.e., the registers
are una↵ected. If there is a next instruction, then it is
executed, else the program stops.

Obviously, a program is syntactically correct only if cer-
tain conditions hold.

Definition 1.3. A RAM program P is a finite sequence
of instructions as in Definition 1.2, and satisfying the fol-
lowing conditions:

(1) For every jump instruction (conditional or not), the
line number to be jumped to must exist in P .

(2) The last instruction of a RAM program is a continue.

The reason for allowing multiple occurences of line num-
bers is to make it easier to concatenate programs without
having to perform a renaming of line numbers.
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The technical choice of jumping to the closest address
N1 above or below comes from the fact that it is easy to
search up or down using primitive recursion, as we will
see later on.

For the purpose of computing a function
f : ⌃⇤ ⇥ · · ·⇥ ⌃⇤| {z }

n

! ⌃⇤ using a RAM program P , we

assume that P has at least n registers called input regis-
ters , and that these registers R1, . . . , Rn are initialized
with the input values of the function f .

We also assume that the output is returned in register
R1.
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Example 1.1. The following RAM program concate-
nates two strings x1 and x2 held in registers R1 and R2.

Since ⌃ = {a, b}, for more clarity, we wrote jmpa instead
of jmp1, jmpb instead of jmp2, adda instead of add1, and
addb instead of add2.

R3  R1
R4  R2

N0 R4 jmpa N1b
R4 jmpb N2b

jmp N3b
N1 adda R3

tail R4
jmp N0a

N2 addb R3
tail R4
jmp N0a

N3 R1  R3
continue
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Definition 1.4. A RAM program P computes the par-
tial function ' : (⌃⇤)n ! ⌃⇤ if the following conditions
hold: For every input (x1, . . . , xn) 2 (⌃⇤)n, having ini-
tialized the input registers R1, . . . , Rn with x1, . . . , xn,
the program eventually halts i↵ '(x1, . . . , xn) is defined,
and if and when P halts, the value of R1 is equal to
'(x1, . . . , xn).

A partial function ' is RAM-computable i↵ it is com-
puted by some RAM program.

For example, the following program computes the erase
function E defined such that

E(u) = ✏

for all u 2 ⌃⇤:

clr R1
continue
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The following program computes the jth successor func-
tion Sj defined such that

Sj(u) = uaj

for all u 2 ⌃⇤:

addj R1
continue

The following program (with n input variables) computes
the projection function Pn

i defined such that

Pn
i (u1, . . . , un) = ui,

where n � 1, and 1  i  n:

R1  Ri
continue

Note that P 1
1 is the identity function.
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Having a programming language, we would like to know
how powerful it is, that is, we would like to know what
kind of functions are RAM-computable.

At first glance, RAM programs don’t do much, but this
is not so. Indeed, we will see shortly that the class of
RAM-computable functions is quite extensive.

One way of getting new programs from previous ones is
via composition. Another one is by primitive recursion.

We will investigate these constructions after introducing
another model of computation, Turing machines .

Remarkably, the classes of (partial) functions computed
by RAM programs and by Turing machines are identical.

This is the class of partial computable functions , also
called partial recursive functions , a term which is now
considered old-fashion.

This class can be given several other definitions.
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The following Lemma will be needed to simplify the en-
coding of RAM programs as numbers.

Lemma 1.1. Every RAM program can be converted
to an equivalent program only using the following type
of instructions:

(1j) N addj Y
(2) N tail Y
(6ja) N Y jmpj N1a
(6jb) N Y jmpj N1b
(7) N continue

The proof is fairly simple. For example, instructions of
the form

Ri Rj

can be eliminated by transferring the contents of Rj into
an auxiliary register Rk, and then by transferring the
contents of Rk into Ri and Rj.
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1.2 Definition of a Turing Machine

We define a Turing machine model for computing func-
tions

f : ⌃⇤ ⇥ · · ·⇥ ⌃⇤| {z }
n

! ⌃⇤,

where ⌃ = {a1, . . . , ak} is some input alphabet. In this
section, since we are primarily interested in computing
functions we only consider deterministic Turing machines.

There are many variants of the Turing machine model.

The main decision that needs to be made has to do with
the kind of tape used by the machine.

We opt for a single finite tape that is both an input and
a storage mechanism.

This tape can be viewed as a string over tape alphabet �
such that ⌃ ✓ �.
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There is a read/write head pointing to some symbol on
the tape, symbols on the tape can be overwritten, and
the read/write head can move one symbol to the left or
one symbol to the right, also causing a state transition.

When the write/read head attempts to move past the
rightmost or the leftmost symbol on the tape, the tape is
allowed to grow.

To accomodate such a move, the tape alphabet contains
some special symbol B /2 ⌃, the blank , and this symbol
is added to the tape as the new leftmost or rightmost
symbol on the tape.

A common variant uses a tape which is infinite at both
ends, but only has finitely many symbols not equal to B,
so e↵ectively it is equivalent to a finite tape allowed to
grow at either ends.
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Another variant uses a semi-infinite tape infinite to the
right, but with a left end.

We find this model cumbersome because it requires shift-
ing right the entire tape when a left move is attempted
from the left end of the tape.

Another decision that needs to be made is the format of
the instructions.

Does an instruction cause both a state transition and a
symbol overwrite, or do we have separate instructions for
a state transition and a symbol overwrite.

In the first case, an instruction can be specified as a quin-
tuple, and in the second case by a quadruple. We opt for
quintuples.
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Definition 1.5. A (deterministic) Turing machine (or
TM )M is a sextupleM = (K,⌃,�, {L, R}, �, q0), where

• K is a finite set of states ;

• ⌃ is a finite input alphabet ;

• � is a finite tape alphabet , s.t. ⌃ ✓ �, K \ � = ;,
and with blank B /2 ⌃;

• q0 2 K is the start state (or initial state);

• � is the transition function , a (finite) set of quintu-
ples

� ✓ K ⇥ �⇥ �⇥ {L, R}⇥K,

such that for all (p, a) 2 K ⇥ �, there is at most
one triple (b, m, q) 2 � ⇥ {L, R} ⇥ K such that
(p, a, b, m, q) 2 �.
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A quintuple (p, a, b, m, q) 2 � is called an instruction .
It is also denoted as

p, a! b, m, q.

The e↵ect of an instruction is to switch from state p to
state q, overwrite the symbol currently scanned a with b,
and move the read/write head either left or right, accord-
ing to m.

Here is an example of a Turing machine.
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Example 1.2. K = {q0, q1, q2, q3};
⌃ = {a, b};
� = {a, b, B};
The instructions in � are:

q0, B ! B, R, q3,

q0, a! b, R, q1,

q0, b! a, R, q1,

q1, a! b, R, q1,

q1, b! a, R, q1,

q1, B ! B, L, q2,

q2, a! a, L, q2,

q2, b! b, L, q2,

q2, B ! B, R, q3.
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1.3 Computations of Turing Machines

To explain how a Turing machine works, we describe its
action on Instantaneous descriptions . We take advan-
tage of the fact that K \ � = ; to define instantaneous
descriptions.

Definition 1.6. Given a Turing machine

M = (K,⌃,�, {L, R}, �, q0),

an instantaneous description (for short an ID) is a
(nonempty) string in �⇤K�+, that is, a string of the form

upav,

where u, v 2 �⇤, p 2 K, and a 2 �.

The intuition is that an ID upav describes a snapshot
of a TM in the current state p, whose tape contains the
string uav, and with the read/write head pointing to the
symbol a.
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Thus, in upav, the state p is just to the left of the symbol
presently scanned by the read/write head.

We explain how a TM works by showing how it acts on
ID’s.

Definition 1.7. Given a Turing machine

M = (K,⌃,�, {L, R}, �, q0),

the yield relation (or compute relation) ` is a binary
relation defined on the set of ID’s as follows. For any two
ID’s ID1 and ID2, we have ID1 ` ID2 i↵ either

(1) (p, a, b, R, q) 2 �, and either

(a) ID1 = upacv, c 2 �, and ID2 = ubqcv, or

(b) ID1 = upa and ID2 = ubqB;

or

(2) (p, a, b, L, q) 2 �, and either

(a) ID1 = ucpav, c 2 �, and ID2 = uqcbv, or

(b) ID1 = pav and ID2 = qBbv.
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Note how the tape is extended by one blank after the
rightmost symbol in Case (1)(b), and by one blank before
the leftmost symbol in Case (2)(b).

As usual, we let `+ denote the transitive closure of `,
and we let `⇤ denote the reflexive and transitive closure
of `.

We can now explain how a Turing machine computes a
partial function

f : ⌃⇤ ⇥ · · ·⇥ ⌃⇤| {z }
n

! ⌃⇤.

Since we allow functions taking n � 1 input strings, we
assume that � contains the special delimiter , not in ⌃,
used to separate the various input strings.
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It is convenient to assume that a Turing machine “cleans
up” its tape when it halts before returning its output.

What this means is that when the Turing machine halts,
the output should be clearly identifiable, so all symbols
not in ⌃ [ {B} that may have been used during the
computation must be erased.

Thus when the TM stops the tape must consist of a string
w 2 ⌃⇤ possibly surrounded by blanks (the symbol B).

Actually, if the output is ✏, the tape must contain a
nonempty string of blanks. To achieve this technically,
we define proper ID’s.
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Definition 1.8. Given a Turing machine

M = (K,⌃,�, {L, R}, �, q0),

where � contains some delimiter , not in ⌃ in addition to
the blank B, a starting ID is of the form

q0w1,w2, . . . ,wn

where w1, . . . , wn 2 ⌃⇤ and n � 2, or q0w with w 2 ⌃+,
or q0B.

A blocking (or halting) ID is an ID upav such that there
are no instructions (p, a, b, m, q) 2 � for any (b, m, q) 2
�⇥ {L, R}⇥K.

A proper ID is a halting ID of the form

BhpwBl,

where w 2 ⌃⇤, and h, l � 0 (with l � 1 when w = ✏).
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Computation sequences are defined as follows.

Definition 1.9. Given a Turing machine

M = (K,⌃,�, {L, R}, �, q0),

a computation sequence (or computation) is a finite or
infinite sequence of ID’s

ID0, ID1, . . . , IDi, IDi+1, . . . ,

such that IDi ` IDi+1 for all i � 0.

A computation sequence halts i↵ it is a finite sequence of
ID’s, so that

ID0 `⇤ IDn,

and IDn is a halting ID.

A computation sequence diverges if it is an infinite se-
quence of ID’s.

We now explain how a Turing machine computes a partial
function.
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Definition 1.10. A Turing machine

M = (K,⌃,�, {L, R}, �, q0)

computes the partial function

f : ⌃⇤ ⇥ · · ·⇥ ⌃⇤| {z }
n

! ⌃⇤

i↵ the following conditions hold:

(1) For every w1, . . . , wn 2 ⌃⇤, given the starting ID

ID0 = q0w1,w2, . . . ,wn

or q0w with w 2 ⌃+, or q0B, the computation se-
quence of M from ID0 halts in a proper ID
i↵ f (w1, . . . , wn) is defined.

(2) If f (w1, . . . , wn) is defined, then M halts in a proper
ID of the form

IDn = Bhpf (w1, . . . , wn)B
l,

which means that it computes the right value.
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A function f (over ⌃⇤) is Turing computable i↵ it is
computed by some Turing machine M .

Note that by (1), the TM M may halt in an improper
ID, in which case f (w1, . . . , wn) must be undefined. This
corresponds to the fact that we only accept to retrieve
the output of a computation if the TM has cleaned
up its tape , i.e., produced a proper ID. In particular,
intermediate calculations have to be erased before halting.
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Example 1.3. K = {q0, q1, q2, q3};
⌃ = {a, b};
� = {a, b, B};
The instructions in � are:

q0, B ! B, R, q3,

q0, a! b, R, q1,

q0, b! a, R, q1,

q1, a! b, R, q1,

q1, b! a, R, q1,

q1, B ! B, L, q2,

q2, a! a, L, q2,

q2, b! b, L, q2,

q2, B ! B, R, q3.

The reader can easily verify that this machine exchanges
the a’s and b’s in a string. For example, on input w =
aaababb, the output is bbbabaa.
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1.4 Equivalence of RAM Programs and Turing Ma-

chines

Turing machines can simulate RAM programs, and as a
result, we have the following theorem.

Theorem 1.2. Every RAM-computable function is
Turing-computable. Furthermore, given a RAM pro-
gram P , we can e↵ectively construct a Turing ma-
chine M computing the same function.

The idea of the proof is to represent the contents of the
registers R1, . . . Rp on the Turing machine tape by the
string

#r1#r2# · · ·#rp#,

where # is a special marker and ri represents the string
held by Ri. We also use Lemma 1.1 to reduce the number
of instructions to be dealt with.
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The Turing machine M is built of blocks, each block sim-
ulating the e↵ect of some instruction of the program P .
The details are a bit tedious, and can be found in the
notes or in Machtey and Young.

RAM programs can also simulate Turing machines.

Theorem 1.3. Every Turing-computable function is
RAM-computable. Furthermore, given a Turing ma-
chine M , one can e↵ectively construct a RAM pro-
gram P computing the same function.

The idea of the proof is to design a RAM program con-
taining an encoding of the current ID of the Turing ma-
chine M in register R1, and to use other registers R2, R3
to simulate the e↵ect of executing an instruction of M by
updating the ID of M in R1.
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The details are tedious and can be found in the notes.

Another proof can be obtained by proving that the class
of Turing computable functions coincides with the class
of partial computable functions (formerly called partial
recursive functions).

Indeed, it turns out that both RAM programs and Turing
machines compute precisely the class of partial recursive
functions.

For this, we need to define the primitive recursive func-
tions .

Informally, a primitive recursive function is a total recur-
sive function that can be computed using only for loops,
that is, loops in which the number of iterations is fixed
(unlike a while loop).

A formal definition of the primitive functions is given in
Section 1.7.
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Definition 1.11. Let ⌃ = {a1, . . . , aN}. The class of
partial computable functions also called partial recur-
sive functions is the class of partial functions (over ⌃⇤)
that can be computed by RAM programs (or equivalently
by Turing machines).

The class of computable functions also called recursive
functions is the subset of the class of partial computable
functions consisting of functions defined for every input
(i.e., total functions).

Turing machines can also be used as acceptors to define
languages so we introduce the basic relevant definitions.
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1.5 Listable Languages and Computable Languages

We define the computably enumerable languages, also
called listable languages, and the computable languages.

The old-fashion terminology for listable languages is re-
cursively enumerable languages, and for computable lan-
guages is recursive languages.

When operating as an acceptor, a Turing machine takes
a single string as input and either goes on forever or halts
with the answer “accept” or “reject.”

One way to deal with acceptance or rejection is to assume
that the TM has a set of final states.
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Another way more consistent with our view that machines
compute functions is to assume that the TM’s under con-
sideration have a tape alphabet containing the special
symbols 0 and 1.

Then acceptance is signaled by the output 1, and rejection
is signaled by the output 0.

Note that with our convention that in order to produce
an output a TM must halt in a proper ID, the TM must
erase the tape before outputing 0 or 1.
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Definition 1.12. Let ⌃ = {a1, . . . , aN}. A language
L ✓ ⌃⇤ is (Turing) listable or (Turing) computably
enumerable (for short, a c.e. set) (or recursively enu-
merable (for short, a r.e. set)) i↵ there is some TM M
such that for every w 2 L, M halts in a proper ID with
the output 1, and for every w /2 L, either M halts in a
proper ID with the output 0, or it runs forever.

A language L ✓ ⌃⇤ is (Turing) computable (or recur-
sive) i↵ there is some TM M such that for every w 2 L,
M halts in a proper ID with the output 1, and for every
w /2 L, M halts in a proper ID with the output 0.
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Thus, given a computably enumerable language L, for
some w /2 L, it is possible that a TM accepting L runs
forever on input w. On the other hand, for a computable
(recursive) language L, a TM accepting L always halts in
a proper ID.

When dealing with languages, it is often useful to consider
nondeterministic Turing machines . Such machines are
defined just like deterministic Turing machines, except
that their transition function � is just a (finite) set of
quintuples

� ✓ K ⇥ �⇥ �⇥ {L, R}⇥K,

with no particular extra condition.
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It can be shown that every nondeterministic Turing ma-
chine can be simulated by a deterministic Turing machine,
and thus, nondeterministic Turing machines also accept
the class of c.e. sets.

It can be shown that a computably enumerable language
is the range of some computable (recursive) function. It
can also be shown that a language L is computable (recur-
sive) i↵ both L and its complement are computably enu-
merable. There are computably enumerable languages
that are not computable (recursive).
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1.6 A Simple Function Not Known to be Computable

The “3n + 1 problem” proposed by Collatz around 1937
is the following:

Given any positive integer n � 1, construct the sequence
ci(n) as follows starting with i = 1:

c1(n) = n

ci+1(n) =

(
ci(n)/2 if ci(n) is even

3ci(n) + 1 if ci(n) is odd.

Observe that for n = 1, we get the infinite periodic se-
quence

1 =) 4 =) 2 =) 1 =) 4 =) 2 =) 1 =) · · · ,

so we may assume that we stop the first time that the
sequence ci(n) reaches the value 1 (if it actually does).
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Such an index i is called the stopping time of the se-
quence. And this is the problem:

Conjecture (Collatz):

For any starting integer value n � 1, the sequence (ci(n))
always reaches 1.

Starting with n = 3, we get the sequence

3 =) 10 =) 5 =) 16 =) 8 =) 4 =) 2 =) 1.

Starting with n = 5, we get the sequence

5 =) 16 =) 8 =) 4 =) 2 =) 1.

Starting with n = 6, we get the sequence

6 =) 3 =) 10 =) 5 =) 16 =) 8 =) 4 =) 2 =) 1.
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Starting with n = 7, we get the sequence

7 =) 22 =) 11 =) 34 =) 17 =) 52 =) 26

=) 13 =) 40 =) 20 =) 10 =) 5 =) 16

=) 8 =) 4 =) 2 =) 1.

One might be surprised to find that for n = 27, it takes
111 steps to reach 1, and for n = 97, it takes 118 steps.

I computed the stopping times for n up to 107 and found
that the largest stopping time, 686 (685 steps) is obtained
for n = 8400511.

The terms of this sequence reach values over 1.5 ⇥ 1011.
The graph of the sequence c(8400511) is shown in Figure
1.1.
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Figure 1.1: Graph of the sequence for n = 8400511.

We can define the partial computable function C (with
positive integer inputs) defined by

C(n) = the smallest i such that ci(n) = 1 if it exists.
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Then the Collatz conjecture is equivalent to asserting that
the function C is (total) computable.

The graph of the function C for 1  n  107 is shown
in Figure 1.2. So far, the conjecture remains open. It has

Figure 1.2: Graph of the function C for 1  n  107.

been checked by computer for all integers  87⇥ 260.


