
Chapter 9

Some NP-Complete Problems

9.1 Statements of the Problems

In this chapter we will show that certain classical algo-
rithmic problems are NP-complete.

This chapter is heavily inspired by Lewis and Papadim-
itriou’s excellent treatment [?].

In order to study the complexity of these problems in
terms of resource (time or space) bounded Turing ma-
chines (or RAM programs), it is crucial to be able to
encode instances of a problem P as strings in a language
LP .

489

490 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

Then an instance of a problem P is solvable i↵ the corre-
sponding string belongs to the language LP .

This implies that our problems must have a yes–no an-
swer, which is not always the usual formulation of opti-
mization problems where what is required is to find some
optimal solution, that is, a solution minimizing or maxi-
mizing so objective (cost) function F .

For example the standard formulation of the traveling
salesman problem asks for a tour (of the cities) of minimal
cost.

Fortunately, there is a trick to reformulate an optimiza-
tion problem as a yes–no answer problem, which is to
explicitly incorporate a budget (or cost) term B into the
problem, and instead of asking whether some objective
function F has a minimum or a maximum w, we ask
whether there is a solution w such that F (w) B in the
case of a minimum solution, or F (w) � B in the case of
a maximum solution.

9.1. STATEMENTS OF THE PROBLEMS 491

We will see several examples of this technique in Problems
5–8 listed below.

The problems that will consider are

(1) Exact Cover

(2) Hamiltonian Cycle for directed graphs

(3) Hamiltonian Cycle for undirected graphs

(4) The Traveling Salesman Problem

(5) Independent Set

(6) Clique

(7) Node Cover

(8) Knapsack, also called subset sum

(9) Inequivalence of ⇤-free Regular Expressions
(10) The 0-1-integer programming problem

We begin by describing each of these problems.

492 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

(1) Exact Cover

We are given a finite nonempty set U = {u1, . . . , un}
(the universe), and a family F = {S1, . . . , Sm} of
m � 1 nonempty subsets of U .

The question is whether there is an exact cover , that
is, a subfamily C ✓ F of subsets in F such that the
sets in C are disjoint and their union is equal to U .

For example, let

U = {u1, u2, u3, u4, u5, u6}, and let F be the family

F = {{u1, u3}, {u2, u3, u6}, {u1, u5}, {u2, u3, u4},

{u5, u6}, {u2, u4}}.

The subfamily

C = {{u1, u3}, {u5, u6}, {u2, u4}}

is an exact cover.

9.1. STATEMENTS OF THE PROBLEMS 493

It is easy to see that Exact Cover is in NP .

To prove that it is NP-complete, we will reduce the
Satisfiability Problem to it.

This means that we provide a method running in poly-
nomial time that converts every instance of the Satis-
fiability Problem to an instance ofExact Cover,
such that the first problem has a solution i↵ the con-
verted problem has a solution.

(2) Hamiltonian Cycle (for Directed Graphs)

Recall that a directed graph G is a pair G = (V, E),
where E ✓ V ⇥ V .

Elements of V are called nodes (or vertices). A pair
(u, v) 2 E is called an edge of G.

494 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

We will restrict ourselves to simple graphs , that is,
graphs without edges of the form (u, u);

equivalently, G = (V, E) is a simple graph if whenever
(u, v) 2 E, then u 6= v.

Given any two nodes u, v 2 V , a path from u to v is
any sequence of n + 1 edges (n � 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 0, a path from u to v is simply a single edge,
(u, v).)

A directed graph G is strongly connected if for every
pair (u, v) 2 V ⇥ V , there is a path from u to v. A
closed path, or cycle , is a path from some node u to
itself.

We will restrict out attention to finite graphs, i.e.
graphs (V, E) where V is a finite set.

9.1. STATEMENTS OF THE PROBLEMS 495

Definition 9.1.Given a directed graph G, a Hamil-
tonian cycle is a cycle that passes through all the
nodes exactly once (note, some edges may not be tra-
versed at all).

Hamiltonian Cycle Problem (for Directed

Graphs): Given a directed graph G, is there an
Hamiltonian cycle in G?

Is there is a Hamiltonian cycle in the directed graph
D shown in Figure 9.1?

Figure 9.1: A tour “around the world.”

496 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

Finding a Hamiltonian cycle in this graph does not
appear to be so easy! A solution is shown in Figure
9.2 below.

v18
v17

v11
v12 v13

v10
v6

v5

v4

v14

v19

v9

v8

v7 v3

v2

v15

v16

v1

v20

Figure 9.2: A Hamiltonian cycle in D.

It is easy to see thatHamiltonian Cycle (for Di-

rected Graphs) is in NP .

To prove that it is NP-complete, we will reduce Ex-
act Cover to it.

9.1. STATEMENTS OF THE PROBLEMS 497

This means that we provide a method running in poly-
nomial time that converts every instance of Exact
Cover to an instance of Hamiltonian Cycle (for

Directed Graphs) such that the first problem has
a solution i↵ the converted problem has a solution.
This is perphaps the hardest reduction.

(3) Hamiltonian Cycle (for Undirected Graphs)

Recall that an undirected graph G is a pair G =
(V, E), where E is a set of subsets {u, v} of V con-
sisting of exactly two distinct elements.

Elements of V are called nodes (or vertices). A pair
{u, v} 2 E is called an edge of G.

Given any two nodes u, v 2 V , a path from u to v is
any sequence of n nodes (n � 2)

u = u1, u2, . . . , un = v

such that {ui, ui+1} 2 E for i = 1, . . . , n � 1. (If
n = 2, a path from u to v is simply a single edge,
{u, v}.)

498 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

An undirected graph G is connected if for every pair
(u, v) 2 V ⇥ V , there is a path from u to v.

A closed path, or cycle, is a path from some node u
to itself.

Definition 9.2. Given an undirected graph G, a
Hamiltonian cycle is a cycle that passes through all
the nodes exactly once (note, some edges may not be
traversed at all).

Hamiltonian Cycle Problem (for Undirected

Graphs): Given an undirected graph G, is there an
Hamiltonian cycle in G?

An instance of this problem is obtained by changing
every directed edge in the directed graph of Figure 9.1
to an undirected edge.

9.1. STATEMENTS OF THE PROBLEMS 499

The directed Hamiltonian cycle given in Figure 9.1
is also an undirected Hamiltonian cycle of the undi-
rected graph of Figure 9.3.

Figure 9.3: A tour “around the world,” undirected version.

We see immediately thatHamiltonian Cycle (for

Undirected Graphs) is in NP .

500 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

To prove that it isNP-complete, we will reduceHamil-

tonian Cycle (for Directed Graphs) to it.

This means that we provide a method running in poly-
nomial time that converts every instance of Hamil-

tonian Cycle (for Directed Graphs) to an in-
stance of Hamiltonian Cycle (for Undirected

Graphs) such that the first problem has a solution
i↵ the converted problem has a solution. This is an
easy reduction.

(4) Traveling Salesman Problem

We are given a set {c1, c2, . . . , cn} of n � 2 cities, and
an n ⇥ n matrix D = (dij) of nonnegative integers,
where dij is the distance (or cost) of traveling from
city ci to city cj.

We assume that dii = 0 and dij = dji for all i, j, so
that the matrix D is symmetric and has zero diagonal.

9.1. STATEMENTS OF THE PROBLEMS 501

Traveling Salesman Problem: Given some n⇥n
matrix D = (dij) as above and some integer B � 0
(the budget of the traveling salesman), find a permu-
tation ⇡ of {1, 2, . . . , n} such that

c(⇡) = d⇡(1)⇡(2) + d⇡(2)⇡(3) + · · ·
+ d⇡(n�1)⇡(n) + d⇡(n)⇡(1) B.

The quantity c(⇡) is the cost of the trip specified by
⇡.

The Traveling Salesman Problem has been stated in
terms of a budget so that it has a yes or no answer,
which allows us to convert it into a language. A mini-
mal solution corresponds to the smallest feasible value
of B.

502 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

Example 9.1. Consider the 4⇥ 4 symmetric matrix
given by

D =

0

BB@

0 2 1 1
2 0 1 1
1 1 0 3
1 1 3 0

1

CCA ,

and the budget B = 4. The tour specified by the
permutation

⇡ =

✓
1 2 3 4
1 4 2 3

◆

has cost 4, since

c(⇡) = d⇡(1)⇡(2) + d⇡(2)⇡(3) + d⇡(3)⇡(4) + d⇡(4)⇡(1)

= d14 + d42 + d23 + d31

= 1 + 1 + 1 + 1 = 4.

The cities in this tour are traversed in the order

(1, 4, 2, 3, 1).

It is clear that the Traveling Salesman Problem

is in NP .

9.1. STATEMENTS OF THE PROBLEMS 503

To show that it isNP-complete, we reduce theHamil-

tonian Cycle Problem (Undirected Graphs)

to it.

This means that we provide a method running in poly-
nomial time that converts every instance of Hamil-

tonian Cycle Problem (Undirected Graphs)

to an instance of the Traveling Salesman Prob-

lem such that the first problem has a solution i↵ the
converted problem has a solution.

(5) Independent Set

The problem is this: Given an undirected graph G =
(V, E) and an integer K � 2, is there a set C of nodes
with |C| � K such that for all vi, vj 2 C, there is no
edge {vi, vj} 2 E?

504 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

A maximal independent set with 3 nodes is shown in
Figure 9.4.

Figure 9.4: A maximal Independent Set in a graph.

A maximal solution corresponds to the largest feasible
value of K.

The problem Independent Set is obviously in NP .

To show that it is NP-complete, we reduce
Exact 3-Satisfiability to it.

9.1. STATEMENTS OF THE PROBLEMS 505

This means that we provide a method running in poly-
nomial time that converts every instance of Exact 3-
Satisfiability to an instance of Independent Set

such that the first problem has a solution i↵ the con-
verted problem has a solution.

(6) Clique

The problem is this: Given an undirected graph G =
(V, E) and an integer K � 2, is there a set C of nodes
with |C| � K such that for all vi, vj 2 C, there is
some edge {vi, vj} 2 E?

Equivalently, does G contain a complete subgraph
with at least K nodes?

A maximal clique with 4 nodes is shown in Figure 9.5.

506 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

Figure 9.5: A maximal Clique in a graph.

A maximal solution corresponds to the largest feasible
value of K.

The problem Clique is obviously in NP .

To show that it is NP-complete, we reduce Inde-

pendent Set to it.

9.1. STATEMENTS OF THE PROBLEMS 507

This means that we provide a method running in poly-
nomial time that converts every instance of Inde-
pendent Set to an instance ofClique such that the
first problem has a solution i↵ the converted problem
has a solution.

(7) Node Cover

The problem is this: Given an undirected graph G =
(V, E) and an integer B � 2, is there a set C of
nodes with |C| B such that C covers all edges
in G, which means that for every edge {vi, vj} 2 E,
either vi 2 C or vj 2 C?

A minimal node cover with 6 nodes is shown in Figure
9.6.

A minimal solution corresponds to the smallest feasi-
ble value of B.

508 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

Figure 9.6: A minimal Node Cover in a graph.

The problem Node Cover is obviously in NP .

To show that it is NP-complete, we reduce Inde-

pendent Set to it.

This means that we provide a method running in poly-
nomial time that converts every instance of Inde-
pendent Set to an instance of Node Cover such
that the first problem has a solution i↵ the converted
problem has a solution.

9.1. STATEMENTS OF THE PROBLEMS 509

The Node Cover problem has the following interesting
interpretation:

think of the nodes of the graph as rooms of a mu-
seum (or art gallery etc.), and each edge as a straight
corridor that joins two rooms.

Then Node Cover may be useful in assigning as few
as possible guards to the rooms, so that all corridors
can be seen by a guard.

(8) Knapsack (also called Subset sum)

The problem is this: Given a finite nonempty set
S = {a1, a2, . . . , an} of nonnegative integers, and
some integer K � 0, all represented in binary, is there
a nonempty subset I ✓ {1, 2, . . . , n} such that

X

i2I

ai = K?

510 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

A “concrete” realization of this problem is that of
a hiker who is trying to fill her/his backpack to its
maximum capacity with items of varying weights or
values.

It is easy to see that the Knapsack Problem is in
NP .

To show that it is NP-complete, we reduce Exact

Cover to it.

This means that we provide a method running in poly-
nomial time that converts every instance of Exact
Cover to an instance of Knapsack Problem such
that the first problem has a solution i↵ the converted
problem has a solution.

9.1. STATEMENTS OF THE PROBLEMS 511

Remark: The 0 -1 Knapsack Problem is de-
fined as the following problem.

Given a set of n items, numbered from 1 to n, each
with a weight wi 2 N and a value vi 2 N, given a
maximum capacity W 2 N and a budget B 2 N, is
there a set of n variables x1, . . . , xn with xi 2 {0, 1}
such that

nX

i=1

xivi � B,

nX

i=1

xiwi W.

Informally, the problem is to pick items to include in
the knapsack so that the sum of the values exceeds a
given minimum B (the goal is to maximize this sum),
and the sum of the weights is less than or equal to the
capacity W of the knapsack.

512 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

A maximal solution corresponds to the largest feasible
value of B.

The Knapsack Problem as we defined it (which is
how Lewis and Papadimitriou define it) is the special
case where vi = wi for i = 1, . . . , n, the vi are pairwise
distinct (they form a set), and W = B.

For this reason, it is also called the Subset Sum

Problem.

Clearly, the Knapsack (Subset Sum) Problem re-
duces to the 0 -1 Knapsack Problem, and thus the
0 -1 Knapsack Problem is also NP-complete.

9.1. STATEMENTS OF THE PROBLEMS 513

(9) Inequivalence of ⇤-free Regular Expressions

Recall that the problem of deciding the equivalence
R1

⇠= R2 of two regular expressions R1 and R2 is the
problem of deciding whether R1 and R2 define the
same language, that is, L[R1] = L[R2].

Is this problem in NP?

In order to show that the equivalence problem for reg-
ular expressions is in NP we would have to be able
to somehow check in polynomial time that two ex-
pressions define the same language, but this is still an
open problem.

What might be easier is to decide whether two regular
expressions R1 and R2 are inequivalent .

514 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

For this, we just have to find a string w such that
either w 2 L[R1] � L[R2] or w 2 L[R2] � L[R1].

The problem is that if we can guess such a string w,
we still have to check in polynomial time that w 2
(L[R1] � L[R2]) [(L[R2] � L[R1]), and this implies
that there is a bound on the length of w which is
polynomial in the sizes of R1 and R2.

Again, this is an open problem.

To obtain a problem in NP we have to consider a
restricted type of regular expressions, and it turns out
that ⇤-free regular expressions are the right candidate.

9.1. STATEMENTS OF THE PROBLEMS 515

A ⇤-free regular expression is a regular expression
which is built up from the atomic expressions using
only + and ·, but not ⇤. For example,

R = ((a + b)aa(a + b) + aba(a + b)b)

is such an expression.

It is easy to see that if R is a ⇤-free regular expression,
then for every string w 2 L[R] we have |w| |R|. In
particular, L[R] is finite.

The above observation shows that if R1 and R2 are
⇤-free and if there is a string w 2 (L[R1] � L[R2]) [
(L[R2] � L[R1]), then |w| |R1| + |R2|, so we can
indeed check this in polynomial time.

It follows that the inequivalence problem for ⇤ -free
regular expressions is in NP .

516 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

To show that it is NP-complete, we reduce the Sat-
isfiability Problem to it.

This means that we provide a method running in poly-
nomial time that converts every instance of Satisfia-
bility Problem to an instance of Inequivalence
of Regular Expressions such that the first prob-
lem has a solution i↵ the converted problem has a
solution.

(10) 0-1 integer programming problem

Let A be any p ⇥ q matrix with integer coe�cients
and let b 2 Zp be any vector with integer coe�cients.

9.1. STATEMENTS OF THE PROBLEMS 517

The 0-1 integer programming problem is to
find whether a system of p linear equations in q vari-
ables

a11x1 + · · · + a1qxq = b1
... ...

ai1x1 + · · · + aiqxq = bi
... ...

ap1x1 + · · · + apqxq = bp

with aij, bi 2 Z has any solution x 2 {0, 1}q, that is,
with xi 2 {0, 1}.

In matrix form, if we let

A =

0

@
a11 · · · a1q
...

ap1 · · · apq

1

A , b =

0

@
b1
...
bp

1

A , x =

0

@
x1
...
xq

1

A ,

then we write the above system as

Ax = b.

518 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

Example 9.2. Is there a solution
x = (x1, x2, x3, x4, x5, x6) of the linear system

0

BBBB@

1 �2 1 3 �1 4
2 2 �1 0 1 �1

�1 1 2 3 �2 3
3 1 �1 2 �1 4
0 1 �1 1 1 2

1

CCCCA

0

BBBBBB@

x1

x2

x3

x4

x5

x6

1

CCCCCCA
=

0

BBBB@

9
0
7
8
2

1

CCCCA

with xi 2 {0, 1}?

Indeed, x = (1, 0, 1, 1, 0, 1) is a solution.

It is immediate that 0-1 integer programming

problem is in NP .

9.1. STATEMENTS OF THE PROBLEMS 519

To prove that it is NP-complete we reduce the
bounded tiling problem to it.

This means that we provide a method running in
polynomial time that converts every instance of the
bounded tiling problem to an instance of the 0-
1 integer programming problem such that the
first problem has a solution i↵ the converted problem
has a solution.

520 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

9.2 Proofs of NP-Completeness

(1) Exact Cover

To prove that Exact Cover is NP-complete, we
reduce the Satisfiability Problem to it:

Satisfiability Problem P Exact Cover

Given a set F = {C1, . . . , C`} of ` clauses constructed
from n propositional variables x1, . . . , xn, we must
construct in polynomial time an instance ⌧ (F) =
(U, F) of Exact Cover such that F is satisfiable
i↵ ⌧ (F) has a solution.

9.2. PROOFS OF NP-COMPLETENESS 521

Example 9.3. If

F = {C1 = (x1 _ x2), C2 = (x1 _ x2 _ x3), C3 = (x2),

C4 = (x2 _ x3)},

then the universe U is given by

U = {x1, x2, x3, C1, C2, C3, C4, p11, p12, p21, p22, p23, p31,

p41, p42},

and the family F consists of the subsets

{p11}, {p12}, {p21}, {p22}, {p23}, {p31}, {p41}, {p42}
T1,F = {x1, p11}
T1,T = {x1, p21}
T2,F = {x2, p22, p31}
T2,T = {x2, p12, p41}
T3,F = {x3, p23}
T3,T = {x3, p42}
{C1, p11}, {C1, p12}, {C2, p21}, {C2, p22}, {C2, p23},

{C3, p31}, {C4, p41}, {C4, p42}.

522 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

The above construction is illustrated in Figure 9.7.

x1 x2 x3 C1 CC2 3 C4

p
11

p p p p p p p
12 21 22 23 31 41 42

x1 x2 x3 C1 CC2 3 C4

p
11

p p p p p p p
12 21 22 23 31 41 42

F = (x v x) (x v x v x) (x) (x v x)

Exact cover for F

1 12 2 2 23 3^ ^ ^

Figure 9.7: Construction of an exact cover from the set of clauses in Example 9.3.

It is easy to check that the set C consisting of the
following subsets is an exact cover:

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},

{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}.

9.2. PROOFS OF NP-COMPLETENESS 523

The general method to construct (U, F) from
F = {C1, . . . , C`} proceeds as follows. Say

Cj = (Lj1 _ · · · _ Ljmj)

is the jth clause in F , where Ljk denotes the kth
literal in Cj and mj � 1. The universe of ⌧ (F) is the
set

U = {xi | 1 i n} [{Cj | 1 j `}
[{pjk | 1 j `, 1 k mj}

where in the third set pjk corresponds to the kth literal
in Cj.

524 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

The following subsets are included in F :

(a) There is a set {pjk} for every pjk.

(b) For every boolean variable xi, the following two
sets are in F :

Ti,T = {xi} [{pjk | Ljk = xi}

which contains xi and all negative occurrences of
xi, and

Ti,F = {xi} [{pjk | Ljk = xi}

which contains xi and all its positive occurrences.
Note carefully that Ti,T involves negative occur-
rences of xi whereas Ti,F involves positive occur-
rences of xi.

(c) For every clause Cj, the mj sets {Cj, pjk} are in
F .

9.2. PROOFS OF NP-COMPLETENESS 525

It remains to prove that F is satisfiable i↵ ⌧ (F) has
a solution.

We claim that if v is a truth assignement that satisfies
F , then we can make an exact cover C as follows:

For each xi, we put the subset Ti,T in C i↵ v(xi) = T,
else we we put the subset Ti,F in C i↵ v(xi) = F.

Also, for every clauseCj, we put some subset {Cj, pjk}
in C for a literal Ljk which is made true by v.

By construction of Ti,T and Ti,F, this pjk is not in
any set in C selected so far. Since by hypothesis F is
satisfiable, such a literal exists for every clause.

Having covered all xi and Cj, we put a set {pjk} in C
for every remaining pjk which has not yet been covered
by the sets already in C.

526 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

Going back to Example 9.3, the truth assigment v(x1) =
T, v(x2) = T, v(x3) = F satisfies

F = {C1 = (x1 _ x2), C2 = (x1 _ x2 _ x3), C3 = (x2),

C4 = (x2 _ x3)},

so we put

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},

{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}

in C.

Conversely, if C is an exact cover of ⌧ (F), we define a
truth assigment as follows:

For every xi, if Ti,T is in C, then we set v(xi) = T,
else if Ti,F is in C, then we set v(xi) = F.

9.2. PROOFS OF NP-COMPLETENESS 527

Example 9.4. Given the exact cover

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},

{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42},

we get the satisfying assigment v(x1) = T, v(x2) =
T, v(x3) = F .

If we now consider the proposition is CNF given by

F2 = {C1 = (x1 _ x2), C2 = (x1 _ x2 _ x3), C3 = (x2),

C4 = (x2 _ x3 _ x4)}

where we have added the boolean variable x4 to clause
C4, then U also contains x4 and p43 so we need to add
the following subsets to F :

T4,F = {x4, p43}, T4,T = {x4}, {C4, p43}, {p43}.

528 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

The truth assigment v(x1) = T, v(x2) = T, v(x3) =
F, v(x4) = T satisfies F2, so an exact cover C is

T1,T = {x1, p21}, T2,T = {x2, p12, p41},

T3,F = {x3, p23}, T4,T = {x4},

{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}, {p43}.

The above construction is illustrated in Figure 9.8.

x1 x2 x3 C1 CC2 3 C4

p
11

p p p p p p p
12 21 22 23 31 41 42

x1 x2 x3 C1 CC2 3 C4

p
11

p p p p p p p
12 21 22 23 31 41 42

F = (x v x) (x v x v x) (x) (x v x v x)

Exact cover for F

1 12 2 2 23 3^ ^ ^

p

p

43

43

4

x4

x4

Figure 9.8: Construction of an exact cover from the set of clauses in Example 9.4.

9.2. PROOFS OF NP-COMPLETENESS 529

Observe that this time, because the truth assignment
v makes both literals corresponding to p42 and p43 true
and since we picked p42 to form the subset {C4, p42},
we need to add the singleton {p43} to C to cover all
elements of U .

530 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

(2) Hamiltonian Cycle (for Directed Graphs)

To prove thatHamiltonian Cycle (for Directed

Graphs) is NP-complete, we will reduce Exact

Cover to it:

Exact Cover P Hamiltonian Cycle (for Di-

rected Graphs)

We need to find an algorithm working in polynomial
time that converts an instance (U, F) ofExact Cover

to a directed graph G = ⌧ (U, F) such that G has a
Hamiltonian cycle i↵ (U, F) has an exact cover.

The construction of the graph G uses a trick involving
a small subgraph Gad with 7 (distinct) nodes known
as a gadget shown in Figure 9.9.

9.2. PROOFS OF NP-COMPLETENESS 531

a

d

u v w

b

c

Figure 9.9: A gadget Gad.

The crucial property of the graph Gad is that if Gad
is a subgraph of a bigger graph G in such a way that
no edge of G is incident to any of the nodes u, v, w
unless it is one of the eight edges of Gad incident to
the nodes u, v, w, then for any Hamiltonian cycle
in G, either the path (a, u), (u, v), (v, w), (w, b) is
traversed or the path (c, w), (w, v), (v, u), (u, d) is
traversed, but not both.

It is convenient to use the simplified notation with a
special type of edge labeled with the exclusive or sign
� between the “edges” between a and b and between
d and c, as shown in Figure 9.10.

532 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

a

d

b

c

�

Figure 9.10: A shorthand notation for a gadget.

This abbreviating device can be extended to the sit-
uation where we build gadgets between a given pair
(a, b) and several other pairs (c1, d1), . . . , (cm, dm), all
nodes beeing distinct, as illustrated in Figure 9.11.

Either all three edges (c1, d1), (c2, d2), (c3, d3) are tra-
versed or the edge (a, b) is traversed, and these possi-
bilities are mutually exclusive.

9.2. PROOFS OF NP-COMPLETENESS 533

a b

d2 c2

d1

c1 d3

c3

�

�

�

Figure 9.11: A shorthand notation for several gadgets.

Example 9.5. The construction of the graph is il-
lustrated in Figure 9.12 for the instance of the exact
cover problem given by

U = {u1, u2, u3, u4}, F = {S1 = {u3, u4},

S2 = {u2, u3, u4}, S3 = {u1, u2}}.

In our example, there is a Hamiltonian where the blue
edges are traversed between the Si nodes, and the red
edges are traversed between the uj nodes.

534 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

u0

u1

u2

u3

u4 S0

S1

S2

S3

�

� �

�

�

�

�

Figure 9.12: The directed graph constructed from the data (U, F) of Example 9.5.

An edge between Si nodes which is not connected by
another �-edge is called a short edge, and otherwise
a long edge.

The Hamiltonian is the following path:

9.2. PROOFS OF NP-COMPLETENESS 535

short (S0, S1), long (S1, S2), short (S2, S3), (S3, u0),

(u0, u1)3, (u1, u2)3, (u2, u3)1, (u3, u4)1, (u4, S0).

Each edge between uj�1 and uj corresponds to an
occurrence of uj in some uniquely determined set
Si 2 F (that is, uj 2 Si), and we put an exclusive-
or edge between the edge (uj�1, uj) and the the long
edge (Si�1, Si) between Si�1 and Si,

The subsets corresponding to the short (Si�1, Si) edges
are S1 and S3, and indeed C = {S1, S3} is an exact
cover.

536 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

It can be proved that (U, F) has an exact cover i↵ the
graph G = ⌧ (U, F) has a Hamiltonian cycle.

For example, if C is an exact cover for (U, F), then
consider the path in G obtained by traversing each
short edge (Si�1, Si) for which Si 2 C, each edge
(uj�1, uj) such that uj 2 Si, which means that this
edge is connected by a�-sign to the long edge (Si�1, Si)
(by construction, for each uj there is a unique such
Si), and the edges (un, S0) and (Sm, u0), then we ob-
tain a Hamiltonian cycle.

In our example, the exact cover C = {S1, S3} yields
the Hamiltonian

short (S0, S1), long (S1, S2), short (S2, S3), (S3, u0),

(u0, u1)3, (u1, u2)3, (u2, u3)1, (u3, u4)1, (u4, S0)

that we encountered earlier.

9.2. PROOFS OF NP-COMPLETENESS 537

(3) Hamiltonian Cycle (for Undirected Graphs)

To show that Hamiltonian Cycle (for Undi-

rected Graphs) isNP-complete we reduceHamil-

tonian Cycle (for Directed Graphs) to it:

Hamiltonian Cycle (for Directed Graphs)

P Hamiltonian Cycle (for Undirected

Graphs)

Given any directed graph G = (V, E) we need to con-
struct in polynomial time an undirected graph ⌧ (G) =
G0 = (V 0, E 0) such that G has a (directed) Hamilto-
nian cycle i↵ G0 has a (undirected) Hamiltonian cycle.

We make three distinct copies v0, v1, v2 of every node
v 2 V which we put in V 0, and for every edge (u, v) 2
E we create five edges as illustrated in the diagram
shown in Figure 9.13.

u v u0 u1 u2 v0 v1 v2=)

Figure 9.13: Conversion of a directed graph into an undirected graph.

538 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

The crucial point about the graph G0 is that although
there may be several edges adjacent to a node u0 or a
node u2, the only way to reach u1 from u0 is through
the edge {u0, u1} and the only way to reach u1 from
u2 is through the edge {u1, u2}.

This implies that any Hamiltonian cycle in G0 arriving
to a node v0 along an edge (u2, v0) must continue to
node v1 and then to v2, which means that the edge
(u, v) is traversed in G.

By considering a Hamiltonian cycle in G0 or perhaps
its reversal, it is not hard to show that a Hamiltonian
cycle in G0 determines a Hamiltonian cycle in G.

Conversely, a Hamiltonian cycle in G determines a
Hamiltonian in G0.

The process of expanding a directed graph into an
undirected graph and the inverse process are illus-
trated in Figure 9.14 and Figure 9.15.

9.2. PROOFS OF NP-COMPLETENESS 539

w u

v

G

u

u
2

u
1

0

v1

v0
v2

w1

w0

w2

w u

v

G

u

u
2

u
1

0

v1

v0
v2

w1

w0

w2

G’

Figure 9.14: Expanding the directed graph into an undirected graph.

540 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

w0

w

w

1

2 u0 u1 u2

v
v1

2

v0

G’

w0

w

w

1

2 u

v
v1

2

v0

collapse u’s

w0

w

w

1

2 u

v

collapse v’s

w u

v

collapse w’sG

Figure 9.15: Collapsing the undirected graph onto a directed graph.

9.2. PROOFS OF NP-COMPLETENESS 541

(4) Traveling Salesman Problem

To show that the Traveling Salesman Problem

is NP-complete, we reduce the Hamiltonian Cy-

cle Problem (Undirected Graphs) to it:

Hamiltonian Cycle Problem (Undirected

Graphs) P Traveling Salesman Problem

Given an undirected graph G = (V, E), we construct
an instance ⌧ (G) = (D, B) of the traveling salesman
problem so that G has a Hamiltonian cycle i↵ the
traveling salesman problem has a solution.

If we let n = |V |, we have n cities and the matrix
D = (dij) is defined as follows:

dij =

8
><

>:

0 if i = j

1 if {vi, vj} 2 E

2 otherwise.

We also set the budget B as B = n.

542 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

Any tour of the cities has cost equal to n plus the
number of pairs (vi, vj) such that i 6= j and {vi, vj}
is not an edge of G. It follows that a tour of cost n
exists i↵ there are no pairs (vi, vj) of the second kind
i↵ the tour is a Hamiltonian cycle.

9.2. PROOFS OF NP-COMPLETENESS 543

(5) Independent Set

To show that Independent Set is NP-complete,
we reduce Exact 3-Satisfiability to it:

Exact 3-Satisfiability P Independent Set

Recall that in Exact 3-Satisfiability every clause
Ci has exactly three literals Li1, Li2, Li3.

Given a set F = {C1, . . . , Cm} of m � 2 such clauses,
we construct in polynomial time an undirected graph
G = (V, E) such that F is satisfiable i↵ G has an
independent set C with at least K = m nodes.

For every i (1 i m), we have three nodes ci1, ci2, ci3

corresponding to the three literalsLi1, Li2, Li3 in clause
Ci, so there are 3m nodes in V .

544 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

The “core” of G consists of m triangles, one for each
set {ci1, ci2, ci3}. We also have an edge {cik, cj`} i↵
Lik and Lj` are complementary literals.

Example 9.6. Let F be the set of clauses

F = {C1 = (x1 _ x2 _ x3), C2 = (x1 _ x2 _ x3),

C3 = (x1 _ x2 _ x3), C4 = (x1 _ x2 _ x3)}.

The graph G associated with F is shown in Figure
9.16.

x2 x3

x1

x2 x3

x1

x2 x3

x1

x2 x3

x1

Figure 9.16: The graph constructed from the clauses of Example 9.6.

9.2. PROOFS OF NP-COMPLETENESS 545

Since any three nodes in a triangle are connected, an
independent set C can have at most one node per
triangle and thus has at most m nodes. Since the
budget is K = m, we may assume that there is an
independent with m nodes.

Define a (partial) truth assignment by

v(xi) =

(
T if Ljk = xi and cjk 2 C

F if Ljk = xi and cjk 2 C.

Since the non-triangle edges in G link nodes corre-
sponding to complementary literals and nodes in C
are not connected, our truth assigment does not as-
sign clashing truth values to the variables xi.

Not all variables may receive a truth value, in which
case we assign an arbitrary truth value to the unas-
signed variables. This yields a satisfying assignment
for F .

546 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

In Example 9.6, the set C = {c11, c22, c32, c41} cor-
responding to the nodes shown in red in Figure 9.16
form an independent set, and they induce the partial
truth assignment v(x1) = T, v(x2) = F.

The variable x3 can be assigned an arbitrary value,
say v(x3) = F, and v is indeed a satisfying truth
assignment for F .

Conversely, if v is a truth assignment for F , then we
obtain an independent set C of size m by picking for
each clause Ci a node cik corresponding to a literal
Lik whose value under v is T.

9.2. PROOFS OF NP-COMPLETENESS 547

(6) Clique

To show thatClique is NP-complete, we reduce In-
dependent Set to it:

Independent Set P Clique

The key the reduction is the notion of the complement
of an undirected graph G = (V, E).

The complement Gc = (V, Ec) of the graph G =
(V, E) is the graph with the same set of nodes V as
G but there is an edge {u, v} (with u 6= v) in Ec i↵
{u, v} /2 E.

Then, it is not hard to check that there is a bijection
between maximum independent sets in G and maxi-
mum cliques in Gc.

548 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

The reduction consists in constructing from a graph
G its complement Gc, and then G has an independent
set i↵ Gc has a clique.

This construction is illustrated in Figure 9.17, where a
maximum independent set in the graph G is shown in
blue and a maximum clique in the graph Gc is shown
in red.

Figure 9.17: A graph (left) and its complement (right).

9.2. PROOFS OF NP-COMPLETENESS 549

(7) Node Cover

To show that Node Cover is NP-complete, we re-
duce Independent Set to it:

Independent Set P Node Cover

This time the crucial observation is that if N is an
independent set in G, then the complement
C = V � N of N in V is a node cover in G.

Thus there is an independent set of size at least K
i↵ there is a node cover of size at most n � K where
n = |V | is the number of nodes in V .

550 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

The reduction leaves the graph unchanged and re-
places K by n � K.

An example is shown in Figure 9.18 where an indepen-
dent set is shown in blue and a node cover is shown
in red.

Figure 9.18: An inpendent set (left) and a node cover (right).

9.2. PROOFS OF NP-COMPLETENESS 551

(8) Knapsack (also called Subset sum)

To show thatKnapsack is NP-complete, we reduce
Exact Cover to it:

Exact Cover P Knapsack

Given an instance (U, F) of set cover with
U = {u1, . . . , un} and F = {S1, . . . , Sm}, a family
of subsets of U , we need to produce in polynomial
time an instance ⌧ (U, F) of the knapsack problem
consisting of k nonnegative integers a1, . . . , ak and
another integer K > 0 such that there is a subset
I ✓ {1, . . . , k} such that

P
i2I ai = K i↵ there is an

exact cover of U using subsets in F .

The trick here is the relationship between set union
and integer addition .

552 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

Example 9.7.Consider the exact cover problem given
by U = {u1, u2, u3, u4} and

F = {S1 = {u3, u4}, S2 = {u2, u3, u4}, S3 = {u1, u2}}.

We can represent each subset Sj by a binary string
aj of length 4, where the ith bit from the left is 1 i↵
ui 2 Sj, and 0 otherwise.

In our example

a1 = 0011

a2 = 0111

a3 = 1100.

Then, the trick is that some family C of subsets Sj is
an exact cover if the sum of the corresponding num-
bers aj adds up to 1111 = 24 � 1 = K.

9.2. PROOFS OF NP-COMPLETENESS 553

For example,

C = {S1 = {u3, u4}, S3 = {u1, u2}}

is an exact cover and

a1 + a3 = 0011 + 1100 = 1111.

Unfortunately, there is a problem with this encoding
which has to do with the fact that addition may in-
volve carry. For example, assuming four subsets and
the universe U = {u1, . . . , u6},

11 + 13 + 15 + 24 = 63,

in binary

001011 + 001101 + 001111 + 011000 = 111111,

but if we convert these binary strings to the corre-
sponding subsets we get the subsets

S1 = {u3, u5, u6}
S2 = {u3, u4, u6}
S3 = {u3, u4, u5, u6}
S4 = {u2, u3},

which are not disjoint and do not cover U .

554 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

The fix is surprisingly simple: use base m (where m
is the number of subsets in F) instead of base 2.

Example 9.8.Consider the exact cover problem given
by U = {u1, u2, u3, u4, u5, u6} and F given by

S1 = {u3, u5, u6}
S2 = {u3, u4, u6}
S3 = {u3, u4, u5, u6}
S4 = {u2, u3},

S5 = {u1, u2, u4}.

In basem = 5, the numbers corresponding to S1, . . . , S5

are

a1 = 001011

a2 = 001101

a3 = 001111

a4 = 011000

a5 = 110100.

9.2. PROOFS OF NP-COMPLETENESS 555

This time,

a1 + a2 + a3 + a4 = 001011 + 001101 + 001111

+ 011000

= 014223 6= 111111,

so {S1, S2, S3, S4} is not a solution. However

a1 + a5 = 001011 + 110100 = 111111,

and C = {S1, S5} is an exact cover.

Thus, given an instance (U, F) of Exact Cover

where U = {u1, . . . , un} and F = {S1, . . . , Sm} the
reduction to Knapsack consists in forming the m
numbers a1, . . . , am (each of n bits) encoding the sub-
sets Sj, namely aji = 1 i↵ ui 2 Sj, else 0, and to let
K = 1 + m2 + · · · + mn�1, which is represented in
base m by the string 11 · · · 11| {z }

n

.

In testing whether
P

i2I ai = K for some subset I ✓
{1, . . . , m}, we use arithmetic in base m.

556 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

If a candidate solution C involves at most m � 1 sub-
sets, then since the corresponding numbers are added
in base m, a carry can never happen.

If the candidate solution involves all m subsets, then
a1 + · · · + am = K i↵ F is a partition of U , since
otherwise some bit in the result of adding up these m
numbers in base m is not equal to 1, even if a carry
occurs.

9.2. PROOFS OF NP-COMPLETENESS 557

(9) Inequivalence of ⇤-free Regular Expressions

To show that Inequivalence of ⇤-free Regular

Expressions is NP-complete, we reduce the Sat-

isfiability Problem to it:

Satisfiability Problem P Inequivalence of ⇤-
free Regular Expressions

We already argued that Inequivalence of ⇤-free
Regular Expressions is in NP because if R is a ⇤-
free regular expression, then for every stringw 2 L[R]
we have |w| |R|.

We reduce the Satisfiability Problem to the In-
equivalence of ⇤-free Regular Expressions as
follows.

558 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

For any set of clauses P = C1 ^ · · · ^ Cp, if the
propositional variables occurring in P are x1, . . . , xn,
we produce two ⇤-free regular expressions R, S over
⌃ = {0, 1}, such that P is satisfiable i↵ LR 6= LS.

The expression S is actually

S = (0 + 1)(0 + 1) · · · (0 + 1)| {z }
n

.

The expression R is of the form

R = R1 + · · · + Rp,

where Ri is constructed from the clause Ci in such a
way that LRi corresponds precisely to the set of truth
assignments that falsify Ci; see below.

9.2. PROOFS OF NP-COMPLETENESS 559

Given any clause Ci, let Ri be the ⇤-free regular ex-
pression defined such that, if xj and xj both belong
to Ci (for some j), then Ri = ;, else

Ri = R1
i · R2

i · · · Rn
i ,

where Rj
i is defined by

Rj
i =

8
<

:

0 if xj is a literal of Ci

1 if xj is a literal of Ci

(0 + 1) if xj does not occur in Ci.

560 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

(10) 0-1 integer programming problem

It is easy to check that the problem is in NP .

To prove that the is NP-complete we reduce the
bounded-tiling problem to it:

bounded-tiling problem P 0-1 integer pro-

gramming problem

Given a tiling problem, ((T , V, H), bs, �0), we create a
0-1-valued variable xmnt, such that xmnt = 1 i↵ tile t
occurs in position (m, n) in some tiling.

Write equations or inequalities expressing that a tiling
exists and then use “slack variables” to convert in-
equalities to equations.

9.2. PROOFS OF NP-COMPLETENESS 561

For example, to express the fact that every position
is tiled by a single tile, use the equation

X

t2T
xmnt = 1,

for all m, n with 1 m 2s and 1 n s. We
leave the rest as as exercise.

562 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

9.3 Succinct Certificates, coNP, and EXP

All the problems considered in Section 9.1 share a com-
mon feature, which is that for each problem, a solution
is produced nondeterministically (an exact cover, a di-
rected Hamiltonian cycle, a tour of cities, an independent
set, a node cover, a clique etc.), and then this candidate
solution is checked deterministically and in polyno-
mial time. The candidate solution is a string called a
certificate (or witness).

It turns out that membership on NP can be defined in
terms of certificates.

To be a certificate, a string must satisfy two conditions:

1. It must be polynomially succinct , which means that
its length is at most a polynomial in the length of the
input.

2. It must be checkable in polynomial time.

9.3. SUCCINCT CERTIFICATES, coNP , AND EXP 563

All “yes” inputs to a problem in NP must have at least
one certificate, while all “no” inputs must have none.

The notion of certificate can be formalized using the no-
tion of a polynomially balanced language.

Definition 9.3. Let ⌃ be an alphabet, and let “;” be a
symbol not in ⌃. A language L0 ✓ ⌃⇤;⌃⇤ is said to be
polynomially balanced if there exists a polynomial p(X)
such that for all x, y 2 ⌃⇤, if x; y 2 L0 then |y| p(|x|).

Suppose L0 is a polynomially balanced language and that
L0 2 P . Then we can consider the language

L = {x 2 ⌃⇤ | (9y 2 ⌃⇤)(x; y 2 L0)}.

The intuition is that for each x 2 L, the set

{y 2 ⌃⇤ | x; y 2 L0}

is the set of certificates of x.

564 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

For every x 2 L, a Turing machine can nondetermin-
istically guess one of its certificates y, and then use the
deterministic Turing machine for L0 to check in polyno-
mial time that x; y 2 L0. It follows that L 2 NP .

Conversely, if L 2 NP and the alphabet ⌃ has at least
two symbols, we can encode the paths in the computation
tree for every input x 2 L, and we obtain a polynomially
balanced language L0 ✓ ⌃⇤;⌃⇤ in P such that

L = {x 2 ⌃⇤ | (9y 2 ⌃⇤)(x; y 2 L0)}.

In summary, we obtain the following theorem.

Theorem 9.1. Let L ✓ ⌃⇤ be a language over an al-
phabet ⌃ with at least two symbols, and let “;” be a
symbol not in ⌃. Then L 2 NP i↵ there is a polyno-
mially balanced language L0 ✓ ⌃⇤;⌃⇤ such that L0 2 P
and

L = {x 2 ⌃⇤ | (9y 2 ⌃⇤)(x; y 2 L0)}.

9.3. SUCCINCT CERTIFICATES, coNP , AND EXP 565

A striking illustration of the notion of succint certificate
is illustrated by the set of composite integers, namely
those natural numbers n 2 N that can be written as the
product pq of two numbers p, q � 2 with p, q 2 N.

For example, the number

4, 294, 967, 297

is a composite!

This is far from obvious, but if an oracle gives us the
certificate {6, 700, 417, 641}, it is easy to carry out in
polynomial time the multiplication of these two numbers
and check that it is equal to 4, 294, 967, 297.

Finding a certificate is usually (very) hard, but checking
that it works is easy. This is the point of certificates.

566 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

We conclude this section with a brief discussion of the
complexity classes coNP and EXP .

By definition,

coNP = {L | L 2 NP},

that is, coNP consists of all complements of languages
in NP .

Since P ✓ NP and P is closed under complementation,

P ✓ coNP ,

so P ✓ NP \ coNP , but nobody knows wheher this
inclusion is proper, and nobody knows whether NP is
closed under complementation, that is, nobody knows
whether NP = coNP .

9.3. SUCCINCT CERTIFICATES, coNP , AND EXP 567

A language L is coNP-hard if every language in coNP
is polynomial-time reducible to L, and coNP-complete
if L 2 coNP and L is coNP-hard.

What can be shown is that if NP 6= coNP then
P 6= NP .

However it is possible that P 6= NP and yet NP =
coNP , although this is considered unlikely.

We have P ✓ NP \ coNP .

There are problems in NP \ coNP not known to be in
P . One of the most famous in the following problem:

Integer factorization problem:

Given an integer N � 3, and another integer M (a bud-
get) such that 1 < M < N , does N have a factor d with
1 < d M?

That Integer factorization is in NP is clear.

568 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

To show that Integer factorization is in coNP , we
can guess a factorization of N into distinct factors all
greater than M , check that they are prime using the re-
sults of Chapter ?? showing that testing primality is in
NP (even in P , but that’s much harder to prove), and
then check that the product of these factors is N .

It is widely believed that Integer factorization does
not belong to P , which is the technical justification for
saying that this problem is hard.

Most cryptographic algorithms rely on this unproven fact.

If Integer factorization was either NP-complete or
coNP-complete, then we would have NP = coNP ,
which is considered very unlikely.

Remark: If
p

N M < N , the above problem is
equivalent to asking whether N is prime.

9.3. SUCCINCT CERTIFICATES, coNP , AND EXP 569

A natural instance of a problem in coNP is the unsatis-
fiability problem for propositions, namely deciding that
a proposition P has no satisfying assignmnent.

Definition 9.4. A proposition P (in CNF) is falsifiable
if there is some truth assigment v such that bv(P) = F.

It is obvious that the set of falsifiable propositions is in
NP . Since a proposition P is valid i↵ P is not falsifiable,
the validity (or tautology) problem TAUT for proposi-
tions is in coNP .

In fact, the follolwing result holds.

Proposition 9.2. The problem TAUT is
coNP-complete.

Despite the fact that this problem has been extensively
studied, not much is known about its exact complexity.

570 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

The reasoning used to show that TAUT is coNP-complete
can also be used to show the following interesting result.

Proposition 9.3. If a language L is NP-complete,
then its complement L is coNP-complete.

The class EXP is defined as follows.

Definition 9.5. A deterministic Turing machine M is
said to be exponentially bounded if there is a polynomial
p(X) such that for every input x 2 ⌃⇤, there is no ID
IDn such that

ID0 ` ID1 `⇤ IDn�1 ` IDn, with n > 2p(|x|).

The class EXP is the class of all languages that are ac-
cepted by some exponentially bounded deterministic Tur-
ing machine.

9.3. SUCCINCT CERTIFICATES, coNP , AND EXP 571

Remark: We can also define the class NEXP as in Def-
inition 9.5, except that we allow nondeterministic Turing
machines.

One of the interesting features of EXP is that it contains
NP .

Theorem 9.4.We have the inclusion NP ✓ EXP.

It is also immediate to see that EXP is closed under
complementation. Furthermore the strict inclusion P ⇢
EXP holds.

Theorem 9.5.We have the strict inclusion
P ⇢ EXP.

The proof involves a diagonalization argument to produce
a language E such that E /2 P , yet E 2 EXP .

572 CHAPTER 9. SOME NP-COMPLETE PROBLEMS

In summary, we have the chain of inclusions

P ✓ NP ✓ EXP ,

where the left inclusion and the right inclusion are both
open problems, but we know that at least one of these
two inclusions is strict.

We also have the inclusions

P ✓ NP ✓ EXP ✓ NEXP .

where the inclusions P ⇢ EXP and NP ⇢ NEXP are
strict (the second proper inclusion is a consequence of the
time hierarchy theorem, a hard result).

The left inclusion and the right inclusion inNP ✓ EXP ✓
NEXP are both open problems, but we know that at
least one of these two inclusions is strict.

It can be shown that if EXP 6= NEXP , then P 6= NP ;
see Papadimitriou [?].

