
1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 61

1.7 The Primitive Recursive Functions

Historically the primitive recursive functions were defined
for numerical functions (computing on the natural num-
bers).

Since one of our goals is to show that the RAM-computable
functions are partial recursive, we define the primitive
recursive functions as functions f : (⌃⇤)m ! ⌃⇤, where
⌃ = {a1, . . . , ak} is a finite alphabet.

As usual, by assuming that ⌃ = {a1}, we can deal with
numerical functions f : Nm ! N.

The class of primitive recursive functions is defined in
terms of base functions and two closure operations.

62 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Definition 1.13. Let ⌃ = {a1, . . . , ak}. The base
functions over ⌃ are the following functions:

(1) The erase function E, defined such that E(w) = ✏,
for all w 2 ⌃⇤;

(2) For every j, 1  j  k, the j-successor function Sj,
defined such that Sj(w) = waj, for all w 2 ⌃⇤;

(3) The projection functions Pn
i , defined such that

Pn
i (w1, . . . , wn) = wi,

for every n � 1, every i, 1  i  n, and for all
w1, . . . , wn 2 ⌃⇤.

Note that P 1
1 is the identity function on ⌃⇤. Projection

functions can be used to permute, duplicate, or drop the
arguments of another function.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 63

In the special case where we are only considering numer-
ical functions (⌃ = {a1}), the function E : N ! N is the
zero function given by E(n) = 0 for all n 2 N, and it is
often denoted by Z.

There is a single successor function Sa1 : N ! N usually
denoted S (or Succ) given by S(n) = n+1 for all n 2 N.

Even though in this section we are primarily interested in
total functions, later on, the same closure operations will
be applied to partial functions so we state the definition of
the closure operations in the more general case of partial
functions.

The first closure operation is (extended) composition.

64 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Definition 1.14. Let ⌃ = {a1, . . . , ak}. For any partial
or total function

g : ⌃⇤ ⇥ · · · ⇥ ⌃⇤
| {z }

m

! ⌃⇤,

and any m � 1 partial or total functions

hi : ⌃
⇤ ⇥ · · · ⇥ ⌃⇤

| {z }
n

! ⌃⇤, n � 1,

the composition of g and the hi is the partial function

f : ⌃⇤ ⇥ · · · ⇥ ⌃⇤
| {z }

n

! ⌃⇤,

denoted as g � (h1, . . . , hm), such that

f (w1, . . . , wn) = g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)),

for all w1, . . . , wn 2 ⌃⇤. If g and all the hi are total func-
tions, then g � (h1, . . . , hm) is obviously a total function.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 65

But if g or any of the hi is a partial function, then the
value (g � (h1, . . . , hm))(w1, . . . , wn) is defined if and
only if all the values hi(w1, . . . , wn) are defined for i =
1, . . . , m, and g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)) is
defined.

Thus even if g “ignores” some of its inputs, in com-
puting g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)), all argu-
ments hi(w1, . . . , wn) must be evaluated.

As an example of a composition, f = g � (P 2
2 , P 2

1) is such
that

f (w1, w2) = g(P 2
2 (w1, w2), P

2
1 (w1, w2)) = g(w2, w1).

The second closure operation is primitive recursion . First
we define primitive recursion for numerical functions be-
cause it is simpler.

66 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Definition 1.15. Given any two partial or total func-
tions g : Nm�1 ! N and h : Nm+1 ! N (m � 2), the
partial or total function f : Nm ! N is defined by prim-
itive recursion from g and h if f is given by

f (0, x2, . . . , xm) = g(x2, . . . , xm),

f (n + 1, x2, . . . , xm) = h(n, f (n, x2, . . . , xm), x2, . . . , xm),

for all n, x2, . . . , xm 2 N.

When m = 1, we have

f (0) = b,

f (n + 1) = h(n, f (n)), for all n 2 N,

for some fixed natural number b 2 N.

If g and h are total functions, it is easy to show that f is
also a total function.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 67

If g or h is partial, obviously f (0, x2, . . . , xm) is defined
i↵ g(x2, . . . , xm) is defined, and f (n + 1, x2, . . . , xm) is
defined i↵ f (n, x2, . . . , xm) is defined and
h(n, f (n, x2, . . . , xm), x2, . . . , xm) is defined.

Definition 1.15 is quite a straightjacket in the sense that
n+ 1 must be the first argument of f , and the definition
only applies if h has m + 1 arguments, but in practice
a “natural” definition often ignores the argument n and
some of the arguments x2, . . . , xm.

This is where the projection functions come into play to
drop, duplicate, or permute arguments.

For example, a “natural” definition of the predecessor
function pred is

pred(0) = 0

pred(m + 1) = m,

but this is not a legal primitive recursive definition.

68 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

To make it a legal primitive recursive definition we need
the function h = P 2

1 , and a legal primitive recursive defi-
nition for pred is

pred(0) = 0

pred(m + 1) = P 2
1 (m, pred(m)).

Addition, multiplication, exponentiation, and
super-exponentiation, can be defined by primitive recur-
sion as follows (being a bit loose, for supexp we should
use some projections ...):

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 69

add(0, n) = P 1
1 (n) = n,

add(m + 1, n) = S � P 3
2 (m, add(m, n), n)

= S(add(m, n))

mult(0, n) = E(n) = 0,

mult(m + 1, n) = add � (P 3
2 , P 3

3)(m, mult(m, n), n)

= add(mult(m, n), n),

rexp(0, n) = S � E(n) = 1,

rexp(m + 1, n) = mult � (P 3
2 , P 3

3)(m, rexp(m, n), n),

exp(m, n) = rexp � (P 2
2 , P 2

1)(m, n),

supexp(0, n) = 1,

supexp(m + 1, n) = exp(n, supexp(m, n)).

We usually write m+n for add(m, n), m⇤n or even mn
for mult(m, n), and mn for exp(m, n).

Since m(n+1) = mn ⇤ m, the primitive recursion in the
definition of exp(m, n) = mn applies to the second ar-
gument n, so we need to introduce the auxiliary function
rexp(m, n) = nm, and then exp(m, n) = rexp(n, m).

70 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

There is a minus operation on N named monus. This
operation denoted by ·� is defined by

m ·� n =

(
m � n if m � n

0 if m < n.

Then monus is defined by

m ·� 0 = m

m ·� (n + 1) = pred(m ·� n),

except that the above is not a legal primitive recursion.
For one thing, recursion should be performed on m, not
n.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 71

We can define rmonus as

rmonus(n, m) = m ·� n,

and then m ·� n = (rmonus � (P 2
2 , P 2

1))(m, n), and

rmonus(0 ·� m) = P 1
1 (m)

rmonus(n + 1, m) = pred � P 2
2 (n, rmonus(n, m)).

72 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

The following functions are also primitive recursive:

sg(n) =

(
1 if n > 0

0 if n = 0,

sg(n) =

(
0 if n > 0

1 if n = 0,

as well as

abs(m, n) = |m � n| = m ·� n + n ·� m,

and

eq(m, n) =

(
1 if m = n

0 if m 6= n,

with

eq(m, n) = sg(|m � n|).

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 73

Finally, the function

cond(m, n, p, q) =

(
p if m = n

q if m 6= n,

is primitive recursive since

cond(m, n, p, q) = eq(m, n) ⇤ p + sg(eq(m, n)) ⇤ q.

We can also design more general version of cond. For
example, define compare as

compare(m, n) =

(
1 if m  n

0 if m > n,

which is given by

compare(m, n) = 1 ·� sg(m ·� n).

74 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Then we can define

cond(m, n, p, q) =

(
p if m  n

q if m > n,

with

cond(m, n, n, p) = compare(m, n) ⇤ p

+ sg(compare(m, n)) ⇤ q.

The above allows to define functions by cases.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 75

We now generalize primitive recursion to functions de-
fined on strings (in ⌃⇤).

The new twist is that instead of the argument n + 1 of
f , we need to consider the k arguments uai of f for i =
1, . . . , k (with u 2 ⌃⇤), so instead of a single function
h, we need k functions hi to define primitive recursively
what f (uai, w2, . . . , wm) is.

76 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Definition 1.16. Let ⌃ = {a1, . . . , ak}. For any partial
or total function

g : ⌃⇤ ⇥ · · · ⇥ ⌃⇤
| {z }

m�1

! ⌃⇤,

where m � 2, and any k partial or total functions

hi : ⌃
⇤ ⇥ · · · ⇥ ⌃⇤

| {z }
m+1

! ⌃⇤,

the partial function

f : ⌃⇤ ⇥ · · · ⇥ ⌃⇤
| {z }

m

! ⌃⇤,

is defined by primitive recursion from g and h1, . . . , hk,
if

f (✏, w2, . . . , wm) = g(w2, . . . , wm),

f (ua1, w2, . . . , wm) = h1(u, f (u, w2, . . . , wm), w2, . . . , wm),

· · · = · · ·
f (uak, w2, . . . , wm) = hk(u, f (u, w2, . . . , wm), w2, . . . , wm),

for all u, w2, . . . , wm 2 ⌃⇤.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 77

When m = 1, for some fixed w 2 ⌃⇤, we have

f (✏) = w,

f (ua1) = h1(u, f (u)),

· · · = · · ·
f (uak) = hk(u, f (u)),

for all u 2 ⌃⇤.

Again, if g and the hi are total, it is easy to see that f is
total.

As an example over {a, b}⇤, the following function g : ⌃⇤⇥
⌃⇤ ! ⌃⇤, is defined by primitive recursion:

g(✏, v) = P 1
1 (v),

g(uai, v) = Si � P 3
2 (u, g(u, v), v),

where 1  i  k.

It is easily verified that g(u, v) = vu.

78 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Then,

con = g � (P 2
2 , P 2

1)

computes the concatenation function, i.e., con(u, v) =
uv.

Here are some primitive recursive functions that often
appear as building blocks for other primitive recursive
functions.

The delete last function dell given by

dell(✏) = ✏

dell(uai) = u, 1  i  k, u 2 ⌃⇤

is defined primitive recursively by

dell(✏) = ✏

dell(uai) = P 2
1 (u, dell(u)), 1  i  k, u 2 ⌃⇤.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 79

For every string w 2 ⌃⇤, the constant function cw given
by

cw(u) = w for all u 2 ⌃⇤

is defined primitive recursively by induction on the length
of w by

c✏ = E

cvai = Si � cv, 1  i  k.

80 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

The sign function sg given by

sg(x) =

(
✏ if x = ✏

a1 if x 6= ✏

is defined primitive recursively by

sg(✏) = ✏

sg(uai) = (ca1 � P 2
1)(u, sg(u)).

The anti-sign function sg given by

sg(x) =

(
a1 if x = ✏

✏ if x 6= ✏

is primitive recursive. The proof is left an an exercise.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 81

The function endj (1  j  k) given by

endj(x) =

(
a1 if x ends with aj

✏ otherwise

is primitive recursive. The proof is left an an exercise.

The reverse function rev : ⌃⇤ ! ⌃⇤ given by rev(u) =
uR is primitive recursive, because

rev(✏) = ✏

rev(uai) = (con � (cai � P 2
1 , P 2

2))(u, rev(u)), 1  i  k.

82 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

The tail function tail given by

tail(✏) = ✏

tail(aiu) = u

is primitive recursive, because

tail = rev � dell � rev.

The last function last given by

last(✏) = ✏

last(uai) = ai

is primitive recursive, because

last(✏) = ✏

last(uai) = cai � P 2
1 (u, last(u)).

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 83

The head function head given by

head(✏) = ✏

head(aiu) = ai

is primitive recursive, because

head = last � rev.

We are now ready to define the class of primitive recursive
functions.

84 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Definition 1.17. Let ⌃ = {a1, . . . , ak}. The class of
primitive recursive functions is the smallest class of (to-
tal) functions (over ⌃⇤) which contains the base functions
and is closed under composition and primitive recursion.

In the special where k = 1, we obtain the class of numer-
ical primitive recursive functions .

The class of primitive recursive functions may not seem
very big, but it contains all the total functions that we
would ever want to compute.

Although it is rather tedious to prove, the following the-
orem can be shown.

1.7. THE PRIMITIVE RECURSIVE FUNCTIONS 85

Theorem 1.4. For any alphabet ⌃ = {a1, . . . , ak}, ev-
ery primitive recursive function is RAM computable,
and thus Turing computable.

The proof is given in an appendix.

In order to define new functions it is also useful to use
predicates.

86 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

1.8 Primitive Recursive Predicates

Primitive recursive predicates will be used in Section 2.2.

Definition 1.18. An n-ary predicate P over N is any
subset of Nn. We write that a tuple (x1, . . . , xn) sat-
isfies P as (x1, . . . , xn) 2 P or as P (x1, . . . , xn). The
characteristic function of a predicate P is the function
CP : Nn ! {0, 1} defined by

Cp(x1, . . . , xn) =

(
1 i↵ P (x1, . . . , xn) holds

0 i↵ not P (x1, . . . , xn).

A predicate P (over N) is primitive recursive i↵ its char-
acteristic function CP is primitive recursive.

1.8. PRIMITIVE RECURSIVE PREDICATES 87

More generally, an n-ary predicate P (over ⌃⇤) is any
subset of (⌃⇤)n. We write that a tuple (x1, . . . , xn) sat-
isfies P as (x1, . . . , xn) 2 P or as P (x1, . . . , xn). The
characteristic function of a predicate P is the function
CP : (⌃⇤)n ! {a1}⇤ defined by

Cp(x1, . . . , xn) =

(
a1 i↵ P (x1, . . . , xn) holds

✏ i↵ not P (x1, . . . , xn).

A predicate P (over ⌃⇤) is primitive recursive i↵ its
characteristic function CP is primitive recursive.

Since we will only need to use primitive recursive pred-
icates over N in the following chapters, for simplicity of
exposition we will restrict ourselves to such predicates.

88 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

It is easily shown that if P and Q are primitive recursive
predicates (over (Nn), then P _ Q, P ^ Q and ¬P are
also primitive recursive.

As an exercise, the reader may want to prove that the
predicate,

prime(n) i↵ n is a prime number, is a primitive recursive
predicate.

For any fixed k � 1, the function

ord(k, n) = exponent of the kth prime in the prime fac-
torization of n, is a primitive recursive function.

We can also define functions by cases.

1.8. PRIMITIVE RECURSIVE PREDICATES 89

Proposition 1.5. If P1, . . . , Pm are pairwise disjoint
primitive recursive n-ary predicates (which means that
Pi\Pj = ; for all i 6= j) and f1, . . . , fm+1 are primitive
recursive functions on Nn, the function g : Nn ! N
defined below is also primitive recursive:

g(x) =

8
>><

>>:

f1(x) i↵ P1(x)
...
fm(x) i↵ Pm(x)
fm+1(x) otherwise.

Here we write x for (x1, . . . , xn).

It is also useful to have bounded quantification and bounded
minimization.

Recall that we are restricting our attention to numerical
predicates and functions, so all variables range over N.

90 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Definition 1.19. If P is an (n+ 1)-ary predicate, then
the bounded existential predicate (9y  x)P (y, z) holds
i↵ some y  x makes P (y, z) true.

The bounded universal predicate (8y  x)P (y, z) holds
i↵ every y  x makes P (y, z) true.

Both (9y  x)P (y, z) and (8y  x)P (y, z) are (n + 1)-
ary predicates; that is, the input arguments are x and
z.

Proposition 1.6. If P is an (n+1)-ary primitive re-
cursive predicate, then (9y  x)P (y, z) and
(8y  x)P (y, z) are also primitive recursive predi-
cates.

The following slight generalization of Proposition 1.6 will
be needed in Section 2.2.

1.8. PRIMITIVE RECURSIVE PREDICATES 91

Proposition 1.7. If P is an (n + 1)-ary primitive
recursive predicate and f : Nn ! N is a primitive re-
cursive function, then (9y  f (z))P (y, z) and
(8y  f (z))P (y, z) are also primitive recursive predi-
cates.

Definition 1.20. If P is an (n+ 1)-ary predicate, then
the bounded minimization of P , min(y  x)P (y, z), is
the function defined such that min(y  x)P (y, z) is the
least natural number y  x such that P (y, z) if such a y
exists, x + 1 otherwise.

The bounded maximization of P , max(y  x)P (y, z),
is the function defined such that max(y  x)P (y, z) is
the largest natural number y  x such that P (y, z) if
such a y exists, x + 1 otherwise.

Both min(y  x)P (y, z) and max(y  x)P (y, z) are
functions from Nn+1 to N; that is, the input arguments
are x and z.

92 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Proposition 1.8. If P is an (n+1)-ary primitive re-
cursive predicate, then min(y  x)P (y, z) and max(y 
x)P (y, z) are primitive recursive functions.

So far the primitive recursive functions do not yield all
the Turing-computable functions.

The following proposition also shows that restricting our-
selves to total functions is too limiting.

Let F be any set of total functions that contains the base
functions and is closed under composition and primitive
recursion (and thus, F contains all the primitive recursive
functions).

Definition 1.21.We say that a function f : ⌃⇤ ⇥⌃⇤ !
⌃⇤ is universal for the one-argument functions in F i↵
for every function g : ⌃⇤ ! ⌃⇤ in F , there is some n 2 N
such that

f (an
1 , u) = g(u)

for all u 2 ⌃⇤.

1.8. PRIMITIVE RECURSIVE PREDICATES 93

Proposition 1.9. For any countable set F of total
functions containing the base functions and closed un-
der composition and primitive recursion, if f is a uni-
versal function for the functions g : ⌃⇤ ! ⌃⇤ in F ,
then f /2 F .

Proof. Assume that the universal function f is in F . Let
g be the function such that

g(u) = f (a|u|
1 , u)a1

for all u 2 ⌃⇤. We claim that g 2 F . It it enough to
prove that the function h such that

h(u) = a|u|
1

is primitive recursive, which is easily shown.

Then, because f is universal, there is some m such that

g(u) = f (am
1 , u)

for all u 2 ⌃⇤.

94 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Letting u = am
1 , we get

g(am
1) = f (am

1 , am
1) = f (am

1 , am
1)a1,

a contradiction.

Thus, either a universal function for F is partial, or it is
not in F .

In order to get a larger class of functions, we need the
closure operation known as minimization.

1.9. THE PARTIAL COMPUTABLE FUNCTIONS 95

1.9 The Partial Computable Functions

Minimization can be viewed as an abstract version of a
while loop.

First let us consider the simpler case of numerical func-
tions.

Consider a function g : Nm+1 ! N, with m � 0. We
would like to know if for any fixed n1, . . . , nm 2 N, the
equation

g(n, n1, . . . , nm) = 0 with respect to n 2 N

has a solution n 2 N, and if so, we return the smallest
such solution.

96 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Thus we are defining a (partial) function f : Nm ! N
such that

f (n1, . . . , nm) = min{n 2 N | g(n, n1, . . . , nm) = 0},

with the understanding that f (n1, . . . , nm) is undefined
otherwise. If g is computed by a RAM program, comput-
ing f (n1, . . . , nm) corresponds to the while loop

n := 0;
while g(n, n1, . . . , nm) 6= 0 do

n := n + 1;
endwhile

let f (n1, . . . , nm) = n.

1.9. THE PARTIAL COMPUTABLE FUNCTIONS 97

Definition 1.22. For any function g : Nm+1 ! N, where
m � 0, the function f : Nm ! N is defined by mini-
mization from g, if the following conditions hold for all
n1, . . . , nm 2 N:

(1) f (n1, . . . , nm) is defined i↵ there is some n 2 N such
that g(p, n1, . . . , nm) is defined for all p, 0  p  n,
and

g(n, n1, . . . , nm) = 0;

(2) When f (n1, . . . , nm) is defined,

f (n1, . . . , nm) = n,

where n is such that g(n, n1, . . . , nm) = 0 and
g(p, n1, . . . , nm) 6= 0 for every p, 0  p  n � 1. In
other words, n is the smallest natural number such
that g(n, n1, . . . , nm) = 0.

Following Kleene, we write

f (n1, . . . , nm) = µn[g(n, n1, . . . , nm) = 0].

98 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Remark: When f (n1, . . . , nm) is defined, f (n1, . . . , nm) =
n, where n is the smallest natural number such that con-
dition (1) holds.

It is very important to require that all the values
g(p, n1, . . . , nm) be defined for all p, 0  p  n, when
defining f (n1, . . . , nm). Failure to do so allows non
-computable functions.

Minimization can be generalized to functions defined on
strings as follows.

Given a function g : (⌃⇤)m+1 ! ⌃⇤, for any fixed w1, . . .,
wm 2 ⌃⇤, we wish to solve the equation

g(u, w1, . . . , wm) = ✏ with respect to u 2 ⌃⇤,

and return the “smallest” solution u, if any.

1.9. THE PARTIAL COMPUTABLE FUNCTIONS 99

The only issue is, what does smallest solution mean.

We resolve this issue by restricting u to be a string of aj’s,
for some fixed letter aj 2 ⌃.

Thus there are k variants of minimization corresponding
to searching for a shortest string in {aj}⇤, for a fixed j,
1  j  k.

Let ⌃ = {a1, . . . , ak}. For any function

g : ⌃⇤ ⇥ · · · ⇥ ⌃⇤
| {z }

m+1

! ⌃⇤,

where m � 0, for every j, 1  j  k, the function

f : ⌃⇤ ⇥ · · · ⇥ ⌃⇤
| {z }

m

! ⌃⇤

looks for the shortest string u over {aj}⇤ (for a fixed j)
such that

g(u, w1, . . . , wm) = ✏.

100 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

This corresponds to the following while loop:

u := ✏;
while g(u, w1, . . . , wm) 6= ✏ do
u := uaj;
endwhile

let f (w1, . . . , wm) = u

The operation of minimization (sometimes called mini-
malization) is defined as follows.

1.9. THE PARTIAL COMPUTABLE FUNCTIONS 101

Definition 1.23. Let ⌃ = {a1, . . . , ak}. For any func-
tion

g : ⌃⇤ ⇥ · · · ⇥ ⌃⇤
| {z }

m+1

! ⌃⇤,

where m � 0, for every j, 1  j  k, the function

f : ⌃⇤ ⇥ · · · ⇥ ⌃⇤
| {z }

m

! ⌃⇤,

is defined by minimization over {aj}⇤ from g, if the
following conditions hold for all w1, . . ., wm 2 ⌃⇤:

(1) f (w1, . . . , wm) is defined i↵ there is some n � 0 such
that g(ap

j, w1, . . . , wm) is defined for all p, 0  p  n,
and

g(an
j , w1, . . . , wm) = ✏.

(2) When f (w1, . . . , wm) is defined,

f (w1, . . . , wm) = an
j ,

where n is such that

g(an
j , w1, . . . , wm) = ✏

and
g(ap

j, w1, . . . , wm) 6= ✏

for every p, 0  p  n � 1.

102 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

We write

f (w1, . . . , wm) = minju[g(u, w1, . . . , wm) = ✏].

Note : When f (w1, . . . , wm) is defined,

f (w1, . . . , wm) = an
j ,

where n is the smallest natural number such that condi-
tion (1) holds.

It is very important to require that all the values
g(ap

j, w1, . . . , wm) be defined for all p, 0  p  n, when
defining f (w1, . . . , wm). Failure to do so allows non-
computable functions.

Remark: Inspired by Kleene’s notation in the case of
numerical functions, we may use the µ-notation :

f (w1, . . . , wm) = µju[g(u, w1, . . . , wm) = ✏].

1.9. THE PARTIAL COMPUTABLE FUNCTIONS 103

The class of partial computable functions is defined as
follows.

Definition 1.24. Let ⌃ = {a1, . . . , ak}. The class of
partial computable functions (in the sense of Herbrand–
Gödel–Kleene), also called partial recursive functions is
the smallest class of partial functions (over ⌃⇤) which con-
tains the base functions and is closed under composition,
primitive recursion, and minimization.

The class of computable functions also called recursive
functions is the subset of the class of partial computable
functions consisting of functions defined for every input
(i.e., total functions).

One of the major results of computability theory is the
following theorem.

104 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Theorem 1.10. For an alphabet ⌃ = {a1, . . . , ak},
every partial computable function (partial recursive
function) is RAM-computable, and thus Turing
-computable. Conversely, every Turing-computable func-
tion is a partial computable function (partial recursive
function). Similarly, the class of computable func-
tions (recursive functions) is equal to the class of Turing-
computable functions that halt in a proper ID for ev-
ery input.

First we prove that every partial computable function
is RAM-computable, which is not that di�cult because
composition, primitive recursion, and minimization are
easily implemented using RAM programs.

By Theorem 1.2, every RAM program can be converted
to a Turing machine, so every partial computable function
is Turing-computable.

1.9. THE PARTIAL COMPUTABLE FUNCTIONS 105

For the converse, one can show that given a Turing ma-
chine, there is a primitive recursive function describing
how to go from one ID to the next.

Then minimization is used to guess whether a computa-
tion halts.

The proof shows that every partial computable function
needs minimization at most once . The characterization
of the computable functions in terms of TM’s follows eas-
ily.

We will prove in Section 2.2 that every RAM-computable
function (over N) is partial computable. This will be done
by encoding RAM programs as natural numbers.

There are computable functions (recursive functions) that
are not primitive recursive. Such an example is given by
Ackermann’s function.

106 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

Ackermann’s function :

This is a function A : N⇥N ! N which is defined by the
following recursive clauses:

A(0, y) = y + 1,

A(x + 1, 0) = A(x, 1),

A(x + 1, y + 1) = A(x, A(x + 1, y)).

It turns out that A is a computable function which is not
primitive recursive.

It can be shown that:

A(0, x) = x + 1,

A(1, x) = x + 2,

A(2, x) = 2x + 3,

A(3, x) = 2x+3 � 3,

and

A(4, x) = 22··
·2

16o
x � 3,

with A(4, 0) = 16 � 3 = 13.

1.9. THE PARTIAL COMPUTABLE FUNCTIONS 107

For example

A(4, 1) = 216 � 3, A(4, 2) = 2216 � 3.

Actually, it is not so obvious that A is a total function.
This can be shown by induction, using the lexicographic
ordering � on N ⇥ N, which is defined as follows:

(m, n) � (m0, n0) i↵ either

m = m0 and n = n0, or

m < m0, or

m = m0 and n < n0.

We write (m, n) � (m0, n0) when (m, n) � (m0, n0) and
(m, n) 6= (m0, n0).

108 CHAPTER 1. RAM PROGRAMS, TURING MACHINES

We can prove that A(m, n) is defined for all (m, n) 2 N⇥
N by complete induction over the lexicographic ordering
on N ⇥ N.

It is possible to show that A is a computable (recursive)
function, although the quickest way to prove it requires
some fancy machinery (the recursion theorem). Proving
that A is not primitive recursive is even harder.

