
Chapter 4

Elementary Recursive Function

Theory

4.1 Acceptable Indexings

In a previous Section, we have exhibited a specific index-
ing of the partial computable functions by encoding the
RAM programs.

Using this indexing, we showed the existence of a univer-
sal function 'univ and of a computable function c, with
the property that for all x, y 2 N,

'c(x,y) = 'x � 'y.

317

318 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

It is natural to wonder whether the same results hold if a
di↵erent coding scheme is used or if a di↵erent model of
computation is used, for example, Turing machines.

What we are aiming at is to find some simple properties
of “nice” coding schemes that allow one to proceed with-
out using explicit coding schemes, as long as the above
properties hold.

Remarkably, such properties exist.

Furthermore, any two coding schemes having these prop-
erties are equivalent in a strong sense (e↵ectively equiva-
lent), and so, one can pick any such coding scheme with-
out any risk of losing anything else because the wrong
coding scheme was chosen.

Such coding schemes, also called indexings, or Gödel num-
berings, or even programming systems, are called accept-
able indexings .

4.1. ACCEPTABLE INDEXINGS 319

Definition 4.1. An indexing of the partial computable
functions is an infinite sequence '0,'1, . . . , of partial
computable functions that includes all the partial com-
putable functions of one argument (there might be repe-
titions, this is why we are not using the term enumera-
tion). An indexing is universal if it contains the partial
computable function 'univ such that

'univ(i, x) = 'i(x)

for all i, x 2 N. An indexing is acceptable if it is uni-
versal and if there is a total computable function c for
composition, such that

'c(i,j) = 'i � 'j

for all i, j 2 N.

A very useful property of acceptable indexings is the so-
called “s-m-n Theorem”.

320 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Using the slightly loose notation '(x1, . . . , xn) for
'(hx1, . . . , xni), the s-m-n theorem says the following.

Given a function ' considered as having m + n argu-
ments, if we fix the values of the first m arguments and
we let the other n arguments vary, we obtain a function
 of n arguments. Then, the index of depends in a
computable fashion upon the index of ' and the first m
arguments x1, . . . , xm.

We can “pull” the first m arguments of ' into the index
of .

Theorem 4.1. (The “s-m-n Theorem”) For any ac-
ceptable indexing '0,'1, . . . , there is a total computable
function s, such that, for all i, m, n � 1, for all x1, . . .,
xm and all y1, . . . , yn, we have

's(i,m,x1,...,xm)(y1, . . . , yn) = 'i(x1, . . . , xm, y1, . . . , yn).

4.1. ACCEPTABLE INDEXINGS 321

As a first application of the s-m-n Theorem, we show
that any two acceptable indexings are e↵ectively inter-
translatable.

Theorem 4.2. Let '0,'1, . . . , be a universal index-
ing, and let 0, 1, . . . , be any indexing with a total
computable s-1-1 function, that is, a function s such
that

 s(i,1,x)(y) = i(x, y)

for all i, x, y 2 N. Then, there is a total computable
function t such that 'i = t(i).

Using Theorem 4.2, if we have two acceptable indexings
'0,'1, . . . , and 0, 1, . . ., there exist total computable
functions t and u such that

'i = t(i) and i = 'u(i)

for all i 2 N.

322 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Also note that if the composition function c is primitive
recursive, then any s-m-n function is primitive recursive,
and the translation functions are primitive recursive.

Actually, a stronger result can be shown. It can be shown
that for any two acceptable indexings, there exist to-
tal computable injective and surjective translation func-
tions.

In other words, any two acceptable indexings are recur-
sively isomorphic (Roger’s isomorphism theorem). Next,
we turn to algorithmically unsolvable, or undecidable ,
problems.

4.2. UNDECIDABLE PROBLEMS 323

4.2 Undecidable Problems

We saw in Section 2.2 that the halting problem for RAM
programs is undecidable. In this section, we take a slightly
more general approach to study the undecidability of
problems, and give some tools for resolving decidability
questions.

First, we prove again the undecidability of the halting
problem, but this time, for any indexing of the partial
computable functions.

Theorem 4.3. (Halting Problem, Abstract Version)
Let 0, 1, . . . , be any indexing of the partial com-
putable functions. Then, the function f defined such
that

f (x, y) =

⇢
1 if x(y) is defined,
0 if x(y) is undefined,

is not computable.

324 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Proof. Assume that f is computable, and let g be the
function defined such that

g(x) = f (x, x)

for all x 2 N. Then g is also computable.

Let ✓ be the function defined such that

✓(x) =

⇢
0 if g(x) = 0,
undefined if g(x) = 1.

We claim that ✓ is not even partial computable. Observe
that ✓ is such that

✓(x) =

⇢
0 if x(x) is undefined,
undefined if x(x) is defined.

4.2. UNDECIDABLE PROBLEMS 325

If ✓ was partial computable, it would occur in the list as
some i, and we would have

✓(i) = i(i) = 0 i↵ i(i) is undefined,

a contradiction. Therefore, f and g can’t be computable.

The function g defined in the proof of Theorem 4.3 is the
characteristic function of a set denoted as K, where

K = {x | x(x) is defined}.

The set K is an example of a set which is not computable.
Since this fact is quite important, we give the following
definition.

326 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Definition 4.2.A subset of ⌃⇤ (or a subset ofN) is com-
putable (or recursive , or decidable) i↵ its characteristic
function is a total computable function (total recursive
function).

Using Definition 4.2, Theorem 4.3 can be restated as fol-
lows.

Lemma 4.4. For any indexing '0,'1, . . . of the par-
tial computable functions (over ⌃⇤ or N), the set K =
{x | 'x(x) is defined} is not computable.

Computable sets allow us to define the concept of a de-
cidable (or undecidable) problem.

The idea is to generalize the situation described in Section
2.2 and Section 2.6, where a set of objects, the RAM
programs, is encoded into a set of natural numbers, using
a coding scheme.

4.2. UNDECIDABLE PROBLEMS 327

Definition 4.3. Let C be a countable set of objects,
and let P be a property of objects in C. We view P as
the set

{a 2 C | P (a)}.

A coding-scheme is an injective function #: C ! N
that assigns a unique code to each object in C.

The property P is decidable (relative to #) i↵ the set

{#(a) | a 2 C and P (a)}

is computable.

The property P is undecidable (relative to #) i↵ the set

{#(a) | a 2 C and P (a)}

is not computable.

328 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Observe that the decidability of a property P of objects
in C depends upon the coding scheme #.

Thus, if we are cheating in using a non-e↵ective cod-
ing scheme, we may declare that a property is decidabe
even though it is not decidable in some reasonable coding
scheme.

Consequently, we require a coding scheme # to be e↵ec-
tive in the following sense.

Given any object a 2 C, we can e↵ectively (i.e.. algo-
rithmically) determine its code #(a).

Conversely, given any integer n 2 N, we should be able
to tell e↵ectively if n is the code of some object in C, and
if so, to find this object.

4.2. UNDECIDABLE PROBLEMS 329

In practice, it is always possible to describe the objects
in C as strings over some (possibly complex) alphabet ⌃
(sets of trees, graphs, etc).

For example, the equality of the partial functions 'x and
'y can be coded as the set

{hx, yi | x, y 2 N, 'x = 'y}.

We now show that most properties about programs (ex-
cept the trivial ones) are undecidable.

330 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

4.3 Reducibility and Rice’s Theorem

First, we show that it is undecidable whether a RAM
program halts for every input. In other words, it is unde-
cidable whether a procedure is an algorithm. We actually
prove a more general fact.

4.3. REDUCIBILITY AND RICE’S THEOREM 331

Lemma 4.5. For any acceptable indexing '0,'1, . . .
of the partial computable functions, the set

TOTAL = {x | 'x is a total function}

is not computable.

Proof. The proof uses a technique known as reducibility.

We try to reduce a set A known to be noncomputable to
TOTAL via a computable function f : A ! TOTAL, so
that

x 2 A i↵ f (x) 2 TOTAL.

332 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

If TOTAL were computable, its characteristic function g
would be computable, and thus, the function g � f would
be computable, a contradiction, since A is assumed to be
noncomputable.

In the present case, we pick A = K.

To find the computable function f : K ! TOTAL, we
use the s-m-n Theorem.

Let ✓ be the function defined below: for all x, y 2 N,

✓(x, y) =
n
'x(x) if x 2 K,
undefined if x /2 K.

Note that ✓ does not depend on y.

4.3. REDUCIBILITY AND RICE’S THEOREM 333

The function ✓ is partial computable. Indeed, we have

✓(x, y) = 'x(x) = 'univ(x, x).

Thus, ✓ has some index j, so that ✓ = 'j, and by the
s-m-n Theorem, we have

's(j,1,x)(y) = 'j(x, y) = ✓(x, y).

Let f be the computable function defined such that

f (x) = s(j, 1, x)

for all x 2 N. Then, we have

'f(x)(y) =
n
'x(x) if x 2 K,
undefined if x /2 K

for all y 2 N.

334 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Thus, observe that 'f(x) is a total function i↵ x 2 K,
that is,

x 2 K i↵ f (x) 2 TOTAL,

where f is computable. As we explained earlier, this
shows that TOTAL is not computable.

The above argument can be generalized to yield a result
known as Rice’s Theorem.

Let '0,'1, . . . be any indexing of the partial computable
functions, and let C be any set of partial computable
functions.

We define the set PC as

PC = {x 2 N | 'x 2 C}.

Observe that if 'i 2 C for some partial computable
function 'i, equivalently i 2 PC, then j 2 PC for all
j 2 N such that 'j = 'i. In other words, if PC contains
the code i of some program Pi computing a partial com-
putable function 'i 2 C, then PC contains the code of
every program computing 'i.

4.3. REDUCIBILITY AND RICE’S THEOREM 335

Steve Cook calls such a set PC a function index set .

We can view C as a property of some of the partial com-
putable functions. For example

C = {all total computable functions}.

Definition 4.4. We say that a set C of partial com-
putable functions (over N) is nontrivial if C is neither
empty nor the set of all partial computable functions.
Equivalently C is nontrivial i↵ PC 6= ; and PC 6= N. We
also say that C is trivial if PC = ; or PC = N.

Theorem 4.6. (Rice’s Theorem) For any acceptable
indexing '0,'1, . . . of the partial computable functions,
for any set C of partial computable functions, the set

PC = {x 2 N | 'x 2 C}

is noncomputable unless C is trivial.

336 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Proof. Assume that C is nontrivial. A set is computable
i↵ its complement is computable (the proof is trivial).

Hence, we may assume that the totally undefined function
is not in C, and since C 6= ;, let be some other function
in C.

We produce a computable function f such that

'f(x)(y) =

⇢
 (y) if x 2 K,
undefined if x /2 K,

for all y 2 N.

We get f by using the s-m-n Theorem. Let = 'i, and
define ✓ as follows:

✓(x, y) = 'univ(i, y) + ('univ(x, x) � 'univ(x, x)),

where � is the primitive recursive function for truncated
subtraction.

Clearly, ✓ is partial computable, and let ✓ = 'j.

4.3. REDUCIBILITY AND RICE’S THEOREM 337

By the s-m-n Theorem, we have

's(j,1,x)(y) = 'j(x, y) = ✓(x, y)

for all x, y 2 N. Letting f be the computable function
such that

f (x) = s(j, 1, x),

by definition of ✓, we get

'f(x)(y) = ✓(x, y) =
n
 (y) if x 2 K,
undefined if x /2 K.

Thus, f is the desired reduction function.

338 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Now, we have

x 2 K i↵ f (x) 2 PC,

and thus, the characteristic function CK of K is equal to
CP � f , where CP is the characteristic function of PC.

Therefore, PC is not computable, since otherwise, K would
be computable, a contradiction.

Rice’s Theorem shows that all nontrivial properties of the
input/output behavior of programs are undecidable! In
particular, the following properties are undecidable.

4.3. REDUCIBILITY AND RICE’S THEOREM 339

Lemma 4.7. The following properties of partial com-
putable functions are undecidable.

(a) A partial computable function is a constant func-
tion.

(b) Given any integer y 2 N, is y in the range of some
partial computable function.

(c) Two partial computable functions 'x and 'y are
identical.

(d) A partial computable function 'x is equal to a given
partial computable function 'a.

(e) A partial computable function yields output z on
input y, for any given y, z 2 N.

(f) A partial computable function diverges for some
input.

(g) A partial computable function diverges for all in-
put.

340 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

A property may be undecidable although it is partially
decidable. By partially decidable, we mean that there
exists a computable function g that enumerates the set
PC = {x | 'x 2 C}.

This means that there is a computable function g whose
range is PC.

We say that PC is computably enumerable . Indeed, g
provides a computable enumeration of PC, with possible
repetitions.

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 341

4.4 Listable (Recursively Enumerable) Sets

Consider the set

A = {x 2 N | 'x(a) is defined},

where a 2 N is any fixed natural number.

By Rice’s Theorem, A is not computable (check this).

We claim that A is the range of a computable function g.
For this, we use the T -predicate.

We produce a function which is actually primitive recur-
sive.

First, note that A is nonempty (why?), and let x0 be any
index in A.

We define g by primitive recursion as follows:

342 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

g(0) = x0,

g(x + 1) =

⇢
⇧1(x) if T (⇧1(x), a,⇧2(x)),
x0 otherwise.

Since this type of argument is new, it is helpful to explain
informally what g does.

For every input x, the function g tries finitely many steps
of a computation on input a of some partial computable
function.

The computation is given by ⇧2(x), and the partial func-
tion is given by ⇧1(x).

Since ⇧1 and ⇧2 are projection functions, when x ranges
over N, both ⇧1(x) and ⇧2(x) also range over N.

Such a process is called a dovetailing computation.

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 343

Therefore all computations on input a for all partial com-
putable functions will be tried, and the indices of the par-
tial computable functions converging on input a will be
selected.

Definition 4.5. A subset X of N is listable , or com-
putably enumerable (or recursively enumerable) i↵ ei-
ther X = ;, or X is the range of some total computable
function. Similarly, a subset X of ⌃⇤ is listable , or com-
putably enumerable (or recursively enumerable) i↵ ei-
ther X = ;, or X is the range of some total computable
function.

For short, a computably enumerable set is also called
an c.e. set . A computably enumerable set is sometimes
called a partially decidable set.

The following Lemma relates computable sets and com-
putably enumerable sets.

344 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Lemma 4.8. A set A is computable i↵ both A and its
complement A are listable.

Proof. Assume that A is computable. Then, it is trivial
that its complement is also computable.

Hence, we only have to show that a computable set is
listable.

The empty set is listable by definition. Otherwise, let
y 2 A be any element. Then, the function f defined
such that

f (x) =

⇢
x i↵ CA(x) = 1,
y i↵ CA(x) = 0,

for all x 2 N is computable and has range A.

Conversely, assume that both A and A are computably
enumerable.

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 345

If either A or A is empty, then A is computable.

Otherwise, let A = f (N) and A = g(N), for some com-
putable functions f and g.

We define the function CA as follows:

CA(x) =
n
1 if f (min y[f (y) = x _ g(y) = x]) = x,
0 otherwise.

The function CA lists A and A in parallel, waiting to see
whether x turns up in A or in A.

Note that x must eventually turn up either in A or in A,
so that CA is a total computable function.

Our next goal is to show that the listable sets can be given
several equivalent definitions. We will often abbreviate
computably enumerable as c.e.

346 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Lemma 4.9. For any subset A of N, the following
properties are equivalent:

(1) A is empty or A is the range of a primitive recur-
sive function.

(2) A is listable.

(3) A is the range of a partial computable function.

(4) A is the domain of a partial computable function.

More intuitive proofs of the implications (3)) (4) and
(4)) (1) can be given.

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 347

Assume that A 6= ; and that A = range(g), where g is
a partial computable function.

Assume that g is computed by a RAM program P .

To compute f (x), we start computing the sequence

g(0), g(1), . . .

looking for x. If x turns up as say g(n), then we output
n.

Otherwise the computation diverges. Hence, the domain
of f is the range of g.

Assume now that A is the domain of some partial com-
putable function g, and that g is computed by some Tur-
ing machine M .

348 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

We construct another Turing machine performing the fol-
lowing steps:

(0) Do one step of the computation of g(0)

. . .

(n) Do n + 1 steps of the computation of g(0)

Do n steps of the computation of g(1)

. . .

Do 2 steps of the computation of g(n � 1)

Do 1 step of the computation of g(n)

During this process, whenever the computation of some
g(m) halts, we output m.

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 349

In this fashion, we will enumerate the domain of g, and
since we have constructed a Turing machine that halts
for every input, we have a total computable function.

The following Lemma can easily be shown using the proof
technique of Lemma 4.9.

Lemma 4.10. The following properties hold.

(1) There is a computable function h such that

range('x) = dom('h(x))

for all x 2 N.
(2) There is a computable function k such that

dom('x) = range('k(x))

and 'k(x) is total computable, for all x 2 N such
that dom('x) 6= ;.

350 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Using Lemma 4.9, we can prove that K is an c.e. set.

Indeed, we have K = dom(f), where

f (x) = 'univ(x, x)

for all x 2 N.

The set

K0 = {hx, yi | 'x(y) converges}

is also an c.e. set, since K0 = dom(g), where

g(z) = 'univ(⇧1(z),⇧2(z)),

which is partial computable.

The sets K and K0 are examples of c.e. sets that are not
computable.

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 351

We can now prove that there are sets that are not c.e.

Lemma 4.11. For any indexing of the partial com-
putable functions, the complement K of the set

K = {x 2 N | 'x(x) converges}

is not listable.

Proof. IfK was listable, sinceK is also listable, by Lemma
4.8, the set K would be computable, a contradiction.

The sets K and K0 are examples of sets that are not c.e.

This shows that the c.e. sets are not closed under comple-
mentation. However, we leave it as an exercise to prove
that the c.e. sets are closed under union and intersection.

352 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

We will prove later on that TOTAL is not c.e.

This is rather unpleasant. Indeed, this means that there
is no way of e↵ectively listing all algorithms (all total
computable functions).

Hence, in a certain sense, the concept of partial com-
putable function (procedure) is more natural than the
concept of a (total) computable function (algorithm).

The next two Lemmas give other characterizations of the
c.e. sets and of the computable sets.

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 353

Lemma 4.12. The following properties hold.

(1) A set A is c.e. i↵ either it is finite or it is the
range of an injective computable function.

(2) A set A is c.e. if either it is empty or it is the
range of a monotonic partial computable function.

(3) A set A is c.e. i↵ there is a Turing machine M
such that, for all x 2 N, M halts on x i↵ x 2 A.

Lemma 4.13. A set A is computable i↵ either it is
finite or it is the range of a strictly increasing com-
putable function.

354 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Another important result relating the concept of partial
computable function and that of a c.e. set is given below.

Theorem 4.14. For every unary partial function f ,
the following properties are equivalent:

(1) f is partial computable.

(2) The set
{hx, f (x)i | x 2 dom(f)}

is c.e.

Using our indexing of the partial computable functions
and Lemma 4.9, we obtain an indexing of the c.e. sets.

4.4. LISTABLE (RECURSIVELY ENUMERABLE) SETS 355

Definition 4.6. For any acceptable indexing '0,'1, . . .
of the partial computable functions, we define the enu-
meration W0, W1, . . . of the c.e. sets by setting

Wx = dom('x).

We now describe a technique for showing that certain sets
are c.e. but not computable, or complements of c.e. sets
that are not computable, or not c.e., or neither c.e. nor
the complement of a c.e. set.

This technique is known as reducibility .

356 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

4.5 Reducibility and Complete Sets

We already used the notion of reducibility in the proof of
Lemma 4.5 to show that TOTAL is not computable.

Definition 4.7. Let A and B be subsets of N (or ⌃⇤).
We say that the set A is many-one reducible to the set
B if there is a total computable function f : N ! N (or
f : ⌃⇤ ! ⌃⇤) such that

x 2 A i↵ f (x) 2 B for all x 2 N.

We writeA  B, and for short, we say thatA is reducible
to B.

4.5. REDUCIBILITY AND COMPLETE SETS 357

Lemma 4.15. Let A, B, C be subsets of N (or ⌃⇤).
The following properties hold:

(1) If A  B and B  C, then A  C.

(2) If A  B then A  B.

(3) If A  B and B is c.e., then A is c.e.

(4) If A  B and A is not c.e., then B is not c.e.

(5) If A  B and B is computable, then A is com-
putable.

(6) If A  B and A is not computable, then B is not
computable.

Another important concept is the concept of a complete
set.

358 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Definition 4.8. A c.e. set A is complete w.r.t. many-
one reducibility i↵ every c.e. set B is reducible to A, i.e.,
B  A.

For simplicity, we will often say complete for complete
w.r.t. many-one reducibility .

Theorem 4.16. The following properties hold:

(1) If A is complete, B is c.e., and A  B, then B is
complete.

(2) K0 is complete.

(3) K0 is reducible to K.

As a corollary of Theorem 4.16, the setK is also complete.

4.5. REDUCIBILITY AND COMPLETE SETS 359

Definition 4.9.Two sets A and B have the same degree
of unsolvability or are equivalent i↵ A  B and B  A.

Since K and K0 are both complete, they have the same
degree of unsolvability.

We will now investigate the reducibility and equivalence
of various sets. Recall that

TOTAL = {x 2 N | 'x is total}.

We define EMPTY and FINITE, as follows:

EMPTY = {x 2 N | 'x is undefined for all input},

FINITE = {x 2 N | 'x has a finite domain}.

360 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

Then,

FINITE = {x 2 N | 'x has an infinite domain},

so that,

EMPTY ⇢ FINITE and TOTAL ⇢ FINITE.

Lemma 4.17.We have K0  EMPTY.

Lemma 4.18. The following properties hold:

(1) EMPTY is not c.e.

(2) EMPTY is c.e.

(3) K and EMPTY are equivalent.

(4) EMPTY is complete.

4.5. REDUCIBILITY AND COMPLETE SETS 361

Lemma 4.19. The following properties hold:

(1) TOTAL and TOTAL are not c.e.

(2) FINITE and FINITE are not c.e.

From Lemma 4.19, we have TOTAL  FINITE. It turns
out that FINITE  TOTAL, and TOTAL and FINITE
are equivalent.

Lemma 4.20.The sets TOTAL and FINITE are equiv-
alent.

362 CHAPTER 4. ELEMENTARY RECURSIVE FUNCTION THEORY

