
Chapter 5

Recursion Theory; More Advanced
Topics

5.1 The Recursion Theorem

The recursion Theorem, due to Kleene, is a fundamental
result in recursion theory.

Theorem 5.1. (Recursion Theorem, Version 1 ) Let
'0,'1, . . . be any acceptable indexing of the partial
computable functions. For every total computable func-
tion f , there is some n such that

'n = 'f(n).
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The recursion Theorem can be strengthened as follows.

Theorem 5.2. (Recursion Theorem, Version 2 ) Let
'0,'1, . . . be any acceptable indexing of the partial
computable functions. There is a total computable
function h such that for all x 2 N, if 'x is total,
then

''x(h(x)) = 'h(x).
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A third version of the recursion Theorem is given below.

Theorem 5.3. (Recursion Theorem, Version 3 ) For
all n � 1, there is a total computable function h of
n + 1 arguments, such that for all x 2 N, if 'x is a
total computable function of n + 1 arguments, then

''x(h(x,x1,...,xn),x1,...,xn) = 'h(x,x1,...,xn),

for all x1, . . . , xn 2 N.

As a first application of the recursion theorem, we can
show that there is an index n such that 'n is the constant
function with output n.

Loosely speaking, 'n prints its own name. Let f be the
computable function such that

f (x, y) = x

for all x, y 2 N.
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By the s-m-n Theorem, there is a computable function g
such that

'g(x)(y) = f (x, y) = x

for all x, y 2 N.

By the recursion Theorem 5.1, there is some n such that

'g(n) = 'n,

the constant function with value n.

As a second application, we get a very short proof of
Rice’s Theorem.

Let C be such that PC 6= ; and PC 6= N, and let j 2 PC

and k 2 N � PC.
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Define the function f as follows:

f (x) =

⇢

j if x /2 PC,
k if x 2 PC,

If PC is computable, then f is computable. By the recur-
sion Theorem 5.1, there is some n such that

'f(n) = 'n.

But then, we have

n 2 PC i↵ f (n) /2 PC

by definition of f , and thus,

'f(n) 6= 'n,

a contradiction.

Hence, PC is not computable.

As a third application, we have the following Lemma.
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Lemma 5.4. Let C be a set of partial computable
functions and let

A = {x 2 N | 'x 2 C}.

The set A is not reducible to its complement A.

The recursion Theorem can also be used to show that
functions defined by recursive definitions other than prim-
itive recursion are partial computable.

This is the case for the function known as Ackermann’s
function , defined recursively as follows:

f (0, y) = y + 1,

f (x + 1, 0) = f (x, 1),

f (x + 1, y + 1) = f (x, f (x + 1, y)).

It can be shown that this function is not primitive re-
cursive. Intuitively, it outgrows all primitive recursive
functions.
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However, f is computable, but this is not so obvious.

We can use the recursion Theorem to prove that f is
computable. Consider the following definition by cases:

g(n, 0, y) = y + 1,

g(n, x + 1, 0) = 'univ(n, x, 1),

g(n, x + 1, y + 1) = 'univ(n, x,'univ(n, x + 1, y)).

Clearly, g is partial computable. By the s-m-n Theorem,
there is a computable function h such that

'h(n)(x, y) = g(n, x, y).

By the recursion Theorem, there is an m such that

'h(m) = 'm.

Therefore, the partial computable function 'm(x, y) sat-
isfies the definition of Ackermann’s function.
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We showed in a previous Section that 'm(x, y) is a to-
tal function, and thus, Ackermann’s function is a total
computable function.

Hence, the recursion Theorem justifies the use of certain
recursive definitions. However, note that there are some
recursive definition that are only satisfied by the com-
pletely undefined function.

In the next Section, we prove the extended Rice Theorem.
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5.2 Extended Rice Theorem

The extended Rice Theorem characterizes the sets of par-
tial computable functions C such that PC is c.e.

First, we need to discuss a way of indexing the partial
computable functions that have a finite domain.

Using the uniform projection function ⇧, we define the
primitive recursive function F such that

F (x, y) = ⇧(y + 1,⇧1(x) + 1,⇧2(x)).

We also define the sequence of partial functions P0, P1, . . .
as follows:

Px(y) =
n

F (x, y) � 1 if 0 < F (x, y) and y < ⇧1(x) + 1,
undefined otherwise.
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Lemma 5.5. Every Px is a partial computable func-
tion with finite domain, and every partial computable
function with finite domain is equal to some Px.

The easy part of the extended Rice Theorem is the fol-
lowing lemma.

Recall that given any two partial functions f : A ! B
and g : A ! B, we say that g extends f i↵ f ✓ g, which
means that g(x) is defined whenever f (x) is defined, and
if so, g(x) = f (x).

Lemma 5.6. Let C be a set of partial computable
functions. If there is an c.e. set A such that, 'x 2 C
i↵ there is some y 2 A such that 'x extends Py, then
PC = {x | 'x 2 C} is c.e.
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Proof. Lemma 5.6 can be restated as

PC = {x | 9y 2 A, Py ✓ 'x}.

If A is empty, so is PC, and PC is c.e.

Otherwise, let f be a computable function such that

A = range(f ).

Let  be the following partial computable function:

 (z) =
n

⇧1(z) if Pf(⇧2(z)) ✓ '⇧1(z),
undefined otherwise.

It is clear that
PC = range( ).

To see that  is partial computable, write  (z) as follows:

 (z) =

8

>

<

>

:

⇧1(z) if 8w  ⇧1(f (⇧2(z)))
[F (f (⇧2(z)), w) > 0 �

'⇧1(z)(w) = F (f (⇧2(z)), w) � 1],
undefined otherwise.
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To establish the converse of Lemma 5.6, we need two
Lemmas.

Lemma 5.7. If PC is c.e. and ' 2 C, then there is
some Py ✓ ' such that Py 2 C.

As a corollary of Lemma 5.7, we note that TOTAL is not
c.e.

Lemma 5.8. If PC is c.e., ' 2 C, and ' ✓  , where
 is a partial computable function, then  2 C.

Observe that Lemma 5.8 yields a new proof that TOTAL
is not c.e. Finally, we can prove the extended Rice The-
orem.
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Theorem 5.9. (Extended Rice Theorem) The set PC

is c.e. i↵ there is a c.e. set A such that

'x 2 C i↵ 9y 2 A (Py ✓ 'x).

Proof. Let PC = dom('i). Using the s-m-n Theorem,
there is a computable function k such that

'k(y) = Py

for all y 2 N.

Define the c.e. set A such that

A = dom('i � k).
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Then,

y 2 A i↵ 'i(k(y)) # i↵ Py 2 C.

Next, using Lemma 5.7 and Lemma 5.8, it is easy to see
that

'x 2 C i↵ 9y 2 A (Py ✓ 'x).
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5.3 Creative and Productive Sets; Incompleteness

In this section, we discuss some special sets that have
important applications in logic: creative and productive
sets .

The concepts to be described are illustrated by the fol-
lowing situation. Assume that

Wx ✓ K

for some x 2 N.

We claim that
x 2 K � Wx.

Indeed, if x 2 Wx, then 'x(x) is defined, and by defini-
tion of K, we get x /2 K, a contradiction.

Therefore, 'x(x) must be undefined, that is,

x 2 K � Wx.
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The above situation can be generalized as follows.

Definition 5.1. A set A is productive i↵ there is a total
computable function f such that

if Wx ✓ A then f (x) 2 A � Wx

for all x 2 N. The function f is called the productive
function of A. A set A is creative if it is c.e. and if its
complement A is productive.

As we just showed, K is creative and K is productive.
The following facts are immediate conequences of the def-
inition.

(1) A productive set is not c.e.

(2) A creative set is not computable.
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Creative and productive sets arise in logic.

The set of theorems of a logical theory is often creative.
For example, the set of theorems in Peano’s arithmetic is
creative. This yields incompleteness results.

Lemma 5.10. If a set A is productive, then it has an
infinite c.e. subset.

Another important property of productive sets is the fol-
lowing.

Lemma 5.11. If a set A is productive, then K  A.
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Using Lemma 5.11, the following results can be shown.

Lemma 5.12. The following facts hold.

(1) If A is productive and A  B, then B is produc-
tive.

(2) A is creative i↵ A is equivalent to K.

(3) A is creative i↵ A is complete,


