Chapter 6

Listable Sets and Diophantine Sets;
Hilbert’s Tenth Problem

6.1 Diophantine Equations and Hilbert’s
Tenth Problem

There is a deep and a priori unexpected connection be-
tween the theory of computable and listable sets and the
solutions of polynomial equations involving polynomials
in several variables with integer coeflicients.

These are polynomials in n > 1 variables z1,...,z,
which are finite sums of monomzals of the form
k1 k
a}xl . e xnn7
where k1, ..., k, € N are nonnegative integers, and a €

Z is an integer (possibly negative).
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The natural number £y 4 - - - + k), is called the degree of

k

. k
the monomial azy" - .-z

For example, if n = 3, then
1. 5, =7, are monomials of degree 0.
2. 3x1, —2x9, are monomials of degree 1.
3. 1129, 22%, 3w123, —5x3, are monomials of degree 2.
4. x93, XT3, —T5, are monomials of degree 3.

5. o1, —riw3, w1a573, are monomials of degree 4.

Definition 6.1. A polynomial P(xy, ..., x,) in the vari-

ables x1,...,x, with integer coeflicients is a finite sum
. L .
of monomials of the form az!"--- 2% The maximum of

the degrees ki + - -+ + kj, of the monomials a:vlfl coe g

is called the total degree of the polynomial P(x1, ..., x,).
The set of all such polynomials is denoted by Z[z1, . . ., x,].

Sometimes, we write P instead of P(x1,...,x,). We also
use variables x, vy, z etc. instead of x1, x9, 3, . . ..



6.1. DIOPHANTINE EQUATIONS; HILBERT’S TENTH PROBLEM 357

For example, 2x — 3y — 1 is a polynomial of total degree
1, 2?2 + y*> — z° is a polynomial of total degree 2, and
2? +y° + 23 — 29 is a polynomial of total degree 3.

Mathematicians have been interested for a long time in
the problem of solving equations of the form

P(a:l,...,ajn):O,

with P € Z[xq, ..., x,], seeking only integer solutions
for 1, ..., x,.

What this means is that we try to find n-tuples of in-

tegers (ay,...,a,) € Z" such that when we assign the
value a; to the variable x; for = 1, ..., n in the polyno-
mial P(xy,...,x,) and evaluate P(aq, ..., a,) we obtain

P(al,...,an):O.

Diophantus of Alexandria, a Greek mathematician of the
3rd century, was one of the first to investigate such equa-
tions.

For this reason, seeking integer solutions of polynomials
in Z|x1,...,x,) is referred to as solving Diophantine
equations.
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This problem is not as simple as it looks. The equation
20 — 3y —1=0
obviously has the solution x = 2,y = 1, and more gener-

ally x = —1 4 3a, y = —1 + 2a, for any integer a € Z.
The equation
Pyt — 22 =0
has the solution z = 3, y = 4, 2 = 5, since 3% + 4° =
9+ 16 =25 = 5%
More generally, the reader should check that
r=t—1, y = 2t, =t +1

1s a solution for all t € Z.

The equation
24+ 42 —29 =0

has the solution x =3,y =1, z = 1.
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What about the equation
w0 422 —30=07

Amazingly, the only known integer solution is
(x,y, z) = (—283059965, —2218888517, 2220422932),

discovered in 1999 by E. Pine, K. Yarbrough, W. Tar-
rant, and M. Beck, following an approach suggested by
N. Elkies.

And what about solutions of the equation

3yt + 20— 33 =07

Until 2019 it was still an open problem but Andrew Booker
found the following amazing solution:

(8,866,128, 975, 287, 528)3+(—8, 778, 405, 442, 862, 239)?
+(—2, 736,111,468, 807,040)° = 33.
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In 1900, at the International Congress of Mathematicians
held in Paris, the famous mathematician David Hilbert
presented a list of ten open mathematical problems.

Soon after, Hilbert published a list of 23 problems. The
tenth problem is this:

Hilbert’s tenth problem (H10)
Find an algorithm that solves the following problem:

Given as input a polynomial P € Z|x1, .. ., z,| with inte-
ger coeflicients, return YES or NO, according to whether
there exist integers aq, . . ., a, € Zsothat P(ay,...,a,) =
0; that is, the Diophantine equation P(x1,...,2,) = 0
has a solution.

[t is important to note that at the time Hilbert proposed
his tenth problem, a rigorous mathematical definition of
the notion of algorithm did not exist.
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In fact, the machinery needed to even define the notion
of algorithm did not exist.

[t is only around 1930 that precise definitions of the notion
of computability due to Turing, Church, and Kleene, were
formulated, and soon after shown to be all equivalent.

S0 to be precise, the above statement of Hilbert’s tenth
should say: find a RAM program (or equivalently a Tur-
ing machine) that solves the following problem: ...

In 1970, the following somewhat surprising resolution of
Hilbert’s tenth problem was reached:
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Theorem (Davis-Putnam-Robinson-Matiyasevich)

Hilbert’s tenth problem 1s undecidable; that 1is, there
1s no algorithm for solving Hilbert’s tenth problem.

Even though Hilbert’s tenth problem turned out to have
a negative solution, the knowledge gained in developing
the methods to prove this result is very significant.

What was revealed is that polynomials have considerable
expressive powers.
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6.2 Diophantine Sets and Listable Sets

We begin by showing that if we can prove that the version
of Hilbert’s tenth problem with solutions restricted to
belong to N is undecidable, then Hilbert’s tenth problem
(with solutions in Z is undecidable).

Proposition 6.1. If we had an algorithm for solving
Hilbert’s tenth problem (with solutions in 7Z.), then we
would have an algorithm for solving Hilbert’s tenth
problem with solutions restricted to belong to N (that
is, nonnegative integers).

The above statement is not at all obvious, although its
proof is short with the help of some number theory:.

Indeed, by a theorem of Lagrange (Lagrange’s four square
theorem), every natural number m can be represented as
the sum of four squares. This is what is used in the proof
of Proposition 6.1.
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In fact, the Davis-Putnam-Robinson-Matiyasevich theo-
rem establishes the undecidability of the version of Hilbert’s
tenth problem restricted to solutions in N.

From now on, we restrict our attention to this version
of Hilbert’s tenth problem.

A key idea is to use Diophantine equations with param-
eters, to define sets of numbers.

For example, consider the polynomial
Pi(a,y,2) = (y+2)(z+2) — a.
For a € N fixed, the equation
a=(y+2)(z+2)

has a solution with y, z € N iff a is composite.

If we now consider the polynomial
Pya,y,z) = y(2z +3) —a,
for a € N fixed, the equation
a=y(2z+3)

has a solution with vy, 2 € N iff a is not a power of 2.
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For a slightly more complicated example, consider the
polynomial
Ps(a,y) =3y +1—a”.

We leave it as an exercise to show that the natural num-
bers a that satisfy the equation

o’ =3y +1
are of the form a =3k + 1 or a = 3k + 2, for any k£ € N.

In the first case, if we let S; be the set of composite
natural numbers, then we can write

S1=1e € N[ (Jy,2)((y +2)(z +2) —a=0)},

where it is understood that the existentially quantified
variables y, z take their values in N.
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In the second case, if we let Sy be the set of natural
numbers that are not powers of 2, then we can write

So={a€eN| Ty, 2)(y(2z2+3) —a=0)}.

In the third case, if we let S5 be the set of natural numbers
that are congruent to 1 or 2 modulo 3, then we can write

Ss={aeN|(FyYBy+1—a*=0)}.
A more explicit Diophantine definition for Sj is

Sz ={a e N| (3y)((a -3y —1)(a -3y —2) =0)}.

The natural generalization is as follows.
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Definition 6.2. A set S C N of natural numbers is
Diophantine (or Diophantine definable) if there is a
polynomial P(x,y1,...,Yn) € Z|x,y1, .- ., Y|, With n >
0! such that

S:{a€N|<3y1:---yyn><P(aay17---:yn>:O>}7

where it is understood that the existentially quantified
variables 1, ..., 1y, take their values in N. Thus a € S
iff there exist some natural numbers (by,...,b,) € N”
such that P(a, by, ...,b,) = 0.

More generally, a relation R C N™ is Diophantine (
2) if there is a polynomial P(x1,...,Zm, Y1, -, Yn
Z\x1, ..o T, Y1y - -5 Yp], With m > 0, such that

R={(ai,...,a,) € N"|
(Fy1, - yn) (Plat, - ooy Gy Y1y - - -5 Yn) = 0) ],

where it is understood that the existentially quantified
variables v, ..., y, take their values in N.

m >
) €

Thus (ay,...ay,) € R iff there exist some natural num-
bers (by,...,b,) € N” such that
P(Gl,...,&m,bl,...,bn) = 0.

"'We have to allow n = 0. Otherwise singleton sets would not be Diophantine.
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At first glance it is not obvious how to “convert” a con-
junction of Diophantine definitions into a single Diophan-
tine definition, but we can do this using the following
trick: given any finite number of Diophantine equations
in the variables x1, ..., z,,

P=0,P=0,.., P,=0, (%)

observe that (x) has a solution (aq, . .., a,), which means
that Pi(ay,...,a,) = 0 for ¢ = 1,...,m, iff the single
equation

PP+ P+ +P=0 €

also has the solution (aq, ..., a,).

Definition 6.3. A (partial) function f: N” — N is
Diophantine iff its graph {(a1,...,a,, a,.1) € N1 |
an+1 = flay,...,a,)} is Diophantine. This means that
there is a polynomial P € Z[z1, ..., Tnt1, Y15 - -, Ypl,
with p > 0, such that a,.1 = f(ay,...,a,) iff there
exist some natural numbers (by,...,b,) € NP such that
P(ay,...,ap41, b1,...,by) = 0. A function f: N* - N
is Diophantine iff it is Diophantine as a partial function
and if it is total. This means that for all (aq,...,a,) €
N" if a,11 = f(aq,...,a,), then the equation
P(ay,...,ap41,91,--.,Yp) = 0 has a solution (in the
variables y1, ..., yp).
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How extensive is the family of Diophantine sets?

The remarkable fact proved by Davis-Putnam-Robinson-
Matiyasevich is that they coincide with the listable sets
(the recursively enumerable sets). This is a highly non-
trivial result.

Actually, the crucial result is that a total function is
computable iff it 1s Diophantine.

The “easy” direction is the following result.

Proposition 6.2. Fvery Diophantine function is (to-
tal) computable. Every Diophantine set is listable (re-
cursively enumerable).

The main theorem of the theory of Diophantine sets is
the following deep result.

Theorem 6.3. (Davis- Putnam-Robinson-Matiyasevich,
1970) Every (total) computable function is Diophan-
tine. Every listable subset of N 1s Diophantine.

Theorem 6.3 is often referred to as the DPRM theorem.
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As noted by Martin Davis, although the proof is certainly
long and nontrivial, it only uses elementary facts of num-
ber theory, nothing more sophisticated than the Chinese
remainder theorem.

Nevetherless, the proof is a tour de force.

Using some results from the theory of computation it is

now easy to deduce that Hilbert’s tenth problem is unde-
cidable.

To achieve this, recall that there are listable sets that are
not computable.

For example, it is shown in Section 2.5 that
K = {x € N | ¢,(x) is defined} is listable but not com-
putable.
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Since K is listable, by Theorem 6.3, it is defined by some
Diophantine equation

P(a,x1,...,z,) =0,
which means that

K={aeN| 3z, ...,x,)(Pla,x1,...,2,) =0)}.

We have the following strong form of the undecidability
of Hilbert’s tenth problem, in the sense that it shows that
Hilbert’s tenth problem is already undecidable for a fixed
Diophantine equation in one parameter.

Theorem 6.4. There is no algorithm which takes as
input the polynomial P(a,xy,...,x,) defining K and
any natural number a € N and decides whether

P(a,z1,...,z,) = 0.
Consequently, Hilbert’s tenth problem is undecidable.

It is an open problem whether Hilbert’s tenth problem
is undecidable if we allow rational solutions (that is,

Ty, ..., 2, € Q).
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6.3 Some Applications of the DPRM Theorem

The first application of the DRPM theorem is a particu-
larly striking way of defining the listable subsets of N as
the nonnegative ranges of polynomials with integer coef-
ficients.

This result is due to Hilary Putnam.

Theorem 6.5. For every listable subset S of N, there
is some polynomial Q(x,x1, . .., x,) with integer coef-
fictents such that

S —{Oa,by, ... b)) | Qlaby,. ... by) €N,
a,bl,...,bHEN}.

Proof idea. By the DPRM theorem (Theorem 6.3), there
is some polynomial P(x,x1,...,z,) with integer coeffi-
cients such that

S={aeN|(Tzy,...,z,)(Pla,z1,...,2,) =0}
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Let Q(x,x1,...,x,) be given by
Qz,z1,...,2,) = (x + 1)1 = PX(z,21,...,2,)) — 1.

We claim that () satisfies the statement of the theorem.
[]

Remark: [t should be noted that in general, the poly-
nomials () arising in Theorem 6.5 may take on negative
integer values, and to obtain all listable sets, we must
restrict ourself to their nonnegative range.

As an example, the set S3 of natural numbers that are
congruent to 1 or 2 modulo 3 is given by

Ss={a e N|(TyBy+1—a*=0)}.

so by Theorem 6.5, S3 is the nonnegative range of the
polynomial

Qz,y) = (x+ 1)1 - By +1—-2")%)) -1
= —(z+1)((3y —2%)* + 203y — 2%))) — 1
= (z+ 1)(2* — 3y)(2 — (z* = 3y)) — 1.
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Observe that Q(x,y) takes on negative values. For ex-
ample, Q(0,0) = —1.

Also, in order for Q(x,y) to be nonnegative,

(2% — 3y)(2 — (2% — 3y)) must be positive, but this can
only happen if 2> — 3y = 1, that is, 22 = 3y + 1, which
is the original equation defining Sj.

There is no miracle. The nonnegativity of Q(z, z1, ..., z,)

must subsume the solvability of the equation
P(x,xy,...,2,) =0.

A particularly interesting listable set is the set of primes.

By Theorem 6.5, in theory, the set of primes is the positive
range of some polynomial with integer coefficients.

Remarkably, some explicit polynomials have been found.

This is a nontrivial task. In particular, the process in-
volves showing that the exponential function is definable,
which was the stumbling block of the completion of the
DPRM theorem for many years.
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To give the reader an idea of how the prootf begins, observe
by the Bezout identity, if p = s+1 and ¢ = s!, then we can
assert that p and ¢ are relatively prime (ged(p,q) = 1)
as the fact that the Diophantine equation

ap — bg =1
is satisfied for some a,b € N.
Then, it is not hard to see that p € N is prime iff the

following set of equations has a solution for a, b, s, r,q €

N:

p=s+1

p=r-4+2

q= s
ap — bqg = 1.

The problem with the above is that the equation ¢ = s!
is not Diophantine.
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The next step is to show that the factorial function is
Diophantine, and this involves a lot of work.

One way to proceed is to show that the above system is
equivalent to a system allowing the use of the exponential
function.

The final step is to show that the exponential function
can be eliminated in favor of polynomial equations.

Here is a polynomial of total degree 25 in 26 variables
(due to J. Jones, D. Sato, H. Wada, D. Wiens) which
produces the primes as its positive range:
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(k+2)|1 = (wz+h+j—q

_|_

+ + + + + + + 4+

(gk +29 +k+1)(h+j)+h — 2]

16(k + 1)k +2)(n+1)* +1 — f4?
2n+p+q+z—e*+[elle+2)(a+1)*+1— 07
(a* — 1)y* 4+ 1 — 2% + [16r%y*(a® — 1) + 1 — u?]?
(@ +u?(u® —a))* — 1)(n +4dy)* + 1 — (z + cu)?)?
(a® = D)I* +1—m??
ai+k+1—1—i*4+n+1+v—y
p+1(a—n—1)+b2an + 2a —n* —2n — 2) — m]
g+ yla—p—1)+s2ap+2a — p* —2p — 2) — x]*

: 9
9

=+ plla — p) + t2ap — p* = 1) = pm]?)|.

Around 2004, Nachi Gupta, an undergraduate student at
Penn, and I, tried to produce the prime 2 as one of the

values of the positive range of the above polynomial.

[t turns out that this leads to values of the variables that
are so large that we never succeeded!
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6.4 (Godel’s Incompleteness Theorem

Godel published his famous incompleteness theorem in
1931.

At the time, his result rocked the mathematical world,
and certainly the community of logicians.

In order to understand why his result had such impact
one needs to step back in time.

In the late 1800’s, Hilbert had advanced the thesis that
it should be possible to completely formalize mathemat-
ics in such a way that every true statement should be
provable “mechanically.”

In modern terminology, Hilbert believed that one could
design a theorem prover that should be complete. His
quest is known as Hilbert’s program.
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In order to achieve his goal, Hilbert was led to investigate
the notion of proof, and with some collaborators includ-
ing Ackerman, Hilbert developed a significant amount of
what is known as proof theory.

When the young Godel announced his incompleteness
theorem, Hilbert’s program came to an abrupt halt. Even
the quest for a complete proof system for arithmetic was
impossible.

It should be noted that when Godel proved his incom-
pleteness theorem, computability theory basically did not
exist, so Godel had to start from scratch. His proof is re-
ally a tour de force.

Godel’s theorem also triggered extensive research on the
notion of computability and undecidability between 1931
and 1936, the major players being Church, Godel himself,
Herbrand, Kleene, Rosser, Turing, and Post.



380 CHAPTER 6. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

In this section we will give a (deceptively) short proof
that relies on the DPRM and the existence of universal
functions.

The proof is short because the hard work lies in the proof
of the DPRM!

The first step is to translate the fact that there is a uni-
versal partial computable function @, (see Proposition

2.5), such that for all x,y € N, if ¢, is the xth partial
computable tunction, then

©2(Y) = Puniv(T,Y).

Also recall from Definition 3.6 that for any acceptable
indexing of the partial computable functions, the listable
(c.e. r.e.) sets W, are given by

W$ — dOm(@ﬂﬁ)a r € N.
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Since unie 18 a partial computable function, it can be
converted into a Diophantine equation so that we have
the following result.

Theorem 6.6. (Universal Equation Theorem) There
15 a Diophantine equation

U(m,a,xy,...x,) =0 such that for every listable (c.e.,
r.e.) set Wy, (m € N) we have

a €W, iff Fry,...,2,)Um,a,x1,...,2,)=0).

The Diophantine equation U(m, a, 1, . .. x,) = 0is called
a universal Diophantine equation. It is customary to
denote U(m, a,x1,...x,) by Ppla,z1,...,1,).



382 CHAPTER 6. LISTABLE AND DIOPHANTINE SETS; HILBERT’S TENTH

Godel’s incompleteness theorem applies to sets of logical
(first-order) formulae of arithmetic built from the math-
ematical symbols 0, S, +, -, < and the logical connectives
AV, =, =V, 4

Recall that logical equivalence, =, is defined by
P=Q it (P=Q) AN (Q=P).

The term

is denoted by S™(0), and represents the natural number
n.
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For example,

Fx(5(5(5(0))) < (5(5(0)) + 2)),

Jr3y3z((0 < 2)A(0 < Y A0 < 2)A((z-x+yy) = 2-2)),

and

VaVyVz(0 < 2) A (0 < y) A (0 < 2) =
(- z-zr+y-yyy =222 2)

are formulae in the language of arithmetic.

All three are true. The first formula is satisfied by = =
S(S(0)), the second by x = S%(0),y = S*(0) and z =
S°(0) (since 3* + 4% = 9+ 16 = 25 = 5%), and the
third formula asserts a special case of Fermat’s famous
theorem:

for every n > 3, the equation z" + y" = 2" has no
solution with x,y,z € Nand x > 0,y > 0, z > 0.

The third formula corrresponds to n = 4. Even for this
case, the proof is hard.
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To be completely rigorous we should explain precisely
what is a formal proof.

Roughly speaking, a proof system consists of axioms and
inference rule.

A proof is a certain kind of tree whose nodes are labeled
with formulae, and this tree is constructed in such a way
that for every node some inference rule is applied.

Given a polynomial P(x1,...,x,) in Zlx1, ..., Ty], we
need a way to “prove” that some natural numbers nq, .. .,
n,, € N are a solution of the Diophantine equation

P(I’l,...,l’m>20,

which means that we need to have enough formulae of
arithmetric to allow us to simplify the expression
P(nq,...,n,) and check whether or not it is equal to
Z€r0.
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For example, if P(z,y) = 2x — 3y — 1, we have the
solution z = 2 and y = 1.

What we do is to group all monomials with positive signs,
2z, and all monomials with negative signs, 3y + 1, plug
in the values for x and vy, simplify using the arithmetic
tables for 4+ and -, and then compare the results.

If they are equal, then we proved that the equation has a
solution.

In our language, x = S*(0), 22 = S*(0) - x, and y =
S10), 3y +1 = 53(0) -y + S(0). We need to simplify the
expressions

2r = S*(0) - S*(0) and 3y +1=5%0)-S(0)+ S(0).
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Using the formulae
( )+5”(0) S"(0)
5™(0) - 5™(0) = 5™(0)
S™(0) < S™0) iff m <n,
with m,n € N, we simplify S%(0) - S%(0) to $*(0), S3(0)-

S(0) + S(0) to S%0), and we see that the results are
equal.

In general, given a polynomial P(x1,...,z,,) in
Zlxq, ..., x|, we write it as

P(x1,...,2m) = Poos(®1, - ., Tm) — Paeg(T1, ..., Tim),
where P,os(1, ..., xy,) consists of the monomials with
positive coefficients, and —P,ee(1, ..., ;) consists of

the monomials with negative coefficients.
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Next we plug in S"1(0),..., S"(0) in Pyos(z1, ..., Tn),
and evaluate using the formulae for the addition and mul-
tiplication tables obtaining a term of the form SP?(0).

Similarly, we plug in S™(0), ..., S™(0) in Poeg(21, - .., Tm),
and evaluate using the formulae for the addition and mul-

tiplication tables obtaining a term of the form S7(0).

Then, since exactly one of the formulae
SP(0) = S90), or SP(0) < SY0), or SY0)< S?0)

is true, we obtain a proof that either P(nq,...,n,) =0
or P(ny,...,ny,) #0.
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A more economical way that does use not an infinite num-
ber of formulae expressing the addition and multiplication
tables is to use various axiomatizations of arithmetic.

One axiomatization known as Robinson arithmetic (R.
M. Robinson (1950)) consists of the following seven ax-
10mS:

Ve(r+0=x
VaVy(z + S(y) = Sz + y))
Vae(x-0=0)
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Peano arithmetic 1s obtained from Robinson arithmetic
by adding a rule schema expressing induction:

(0) AVn(p(n) = @(n +1))] = Ymp(m),

where ¢(z) is any (first-order) formula of arithmetic. To
deal with <, we also have the axiom

VaVy(zx <y = 3z2(5(2) + z =y)).

[t is easy to prove that the formulae

S™(0) + 8™(0) = 8™ (0)
S™(0) - .S"(0) = S™(0)
S™(0) < S"0) iff m <mn,

are provable in Robinson arithmetic, and thus in Peano
arithmetic (with m,n € N).
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Godel’s incompleteness applies to sets A of formulae of
arithmetic that are “nice” and strong enough.

A set A of formulae is nice if it is listable and consistent,
which means that it is impossible to prove ¢ and —
from A for some formula ¢. In other words, A is free of
contradictions.

Since the axioms of Peano arithmetic are obviously true
statements about N and since the induction principle
holds for N, the set of all formulae provable in Robin-
son arithmetic and in Peano arithmetic is consistent.

As in Section 5.3, it is possible to assign a Godel number
#(A) to every first-order sentence A in the language of
arithmetic; see Enderton [?] (Chapter I11) or Kleene I.M.
7] (Chapter X).



6.4. GODEL’S INCOMPLETENESS THEOREM 391

With a slight abuse of notation, we say that a set T is
sentences of arithmetic is computable (resp. listable) iff

the set of Godel numbers #(A) of sentences A in T is
computable (resp. listable).

It can be shown that the set of all formulae provable in
Robinson arithmetic and in Peano arithmetic are listable.

Here is a rather strong version of Godel’s incompleteness
from Davis, Matiyasevich and Robinson [?].
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Theorem 6.7. (Gddel’s Incompleteness Theorem) Let
A be a set of formulae of arithmetic satisfying the fol-
lowing properties:

(a) The set A is consistent.
(b) The set A is listable (c.e., r.e.)

(c) The set A is strong enough to prove all formulae
S"(0) + S™(0) = S™(0)
S™(0) - .S"(0) = 85"(0)
S™0) < S™0) iff m<n,
for all m,n € N.

Then we can construct a Diophantine equation
F(xy1,...,2,) =0 corresponding to A such that

F(xy1,...,x,) =0 has no solution with x1,...,x, € N
but the formula
—(dxy, ..., x)(F(x1,...,2,) =0) (%)

is not provable from A. In other words, there is a true
statement of arithmetic not provable from A; that is,
A is incomplete.
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As a corollary of Theorem 6.7, since the theorems prov-
able in Robinson arithmetic satisfy (a), (b), (¢), we de-
duce that there are true theorems of arithmetic not prov-
able in Robinson arithmetic; in short, Robinson arith-
metic 1s incomplete.

Since Robinson arithmetic does not have induction ax-
ioms, this shows that induction is not the culprit behind
incompleteness.

Since Peano arithmetic is an extension (consistent) of
Robinson arithmetic, ¢t s also tncomplete.

This is Godel’s original incompleteness theorem, but Godel
had to develop from scratch the tools needed to prove his

result, so his proof is very different (and a tour de force).

But the situation is even more dramatic.
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Adding a true unprovable statement to a set A satisfying
(a), (b), (c) preserves properties (a), (b), (¢), so there is
no escape from incompleteness (unless perhaps we allow
unreasonable sets of formulae violating (b)).

Godel’s incomplenetess theorem is a negative result, in
the sense that it shows that there is no hope of obtaining
proof systems capable of proving all true statements for
various mathematical theories such as arithmetic.

We can also view Godel’s incomplenetess theorem posi-
tively as evidence that mathematicians will never be re-
placed by computers! There is always room for creativity.

The true but unprovable formulae arising in Godel’s in-
completeness theorem are rather contrived and by no
means ‘natural.”
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For many years after Godel’s proot was published logi-
cians looked for natural incompleteness phenomena.

In the early 1980’s such results were found, starting with
a result of Kirby and Paris.

Harvey Friedman then found more spectacular instances
of natural incompleteness, one of which involves a finite

miniaturization of Kruskal’s tree theorem.

The proof of such results uses some deep methods of proof
theory involving a tool known as ordinal notations.

A survey of such results can be found in Gallier [?].
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