
406 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

5.7 The Primitive Recursive Functions

The class of primitive recursive functions is defined in
terms of base functions and closure operations.

Definition 5.12. Let Σ = {a1, . . . , aN}. The base
functions over Σ are the following functions:

(1) The erase function E, defined such that E(w) = ϵ,
for all w ∈ Σ∗;

(2) For every j, 1 ≤ j ≤ N , the j-successor function
Sj, defined such that Sj(w) = waj, for all w ∈ Σ∗;

(3) The projection functions Pn
i , defined such that

Pn
i (w1, . . . , wn) = wi,

for every n ≥ 1, every i, 1 ≤ i ≤ n, and for all
w1, . . . , wn ∈ Σ∗.

Note that P 1
1 is the identity function on Σ∗. Projection

functions can be used to permute the arguments of an-
other function.

5.7. THE PRIMITIVE RECURSIVE FUNCTIONS 407

A crucial closure operation is (extended) composition.

Definition 5.13. Let Σ = {a1, . . . , aN}. For any func-
tion

g : Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
m

→ Σ∗,

and any m functions

hi : Σ
∗ × · · ·× Σ∗︸ ︷︷ ︸

n

→ Σ∗,

the composition of g and the hi is the function

f : Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
n

→ Σ∗,

denoted as g ◦ (h1, . . . , hm), such that

f(w1, . . . , wn) = g(h1(w1, . . . , wn), . . . , hm(w1, . . . , wn)),

for all w1, . . . , wn ∈ Σ∗.

As an example, f = g ◦ (P 2
2 , P

2
1) is such that

f(w1, w2) = g(w2, w1).

408 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

Another crucial closure operation is primitive recursion.

Definition 5.14. Let Σ = {a1, . . . , aN}. For any func-
tion

g : Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
m−1

→ Σ∗,

where m ≥ 2, and any N functions

hi : Σ
∗ × · · ·× Σ∗︸ ︷︷ ︸

m+1

→ Σ∗,

the function

f : Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
m

→ Σ∗,

is defined by primitive recursion from g and h1, . . . , hN ,
if

f(ϵ, w2, . . . , wm) = g(w2, . . . , wm),

f(ua1, w2, . . . , wm) = h1(u, f(u, w2, . . . , wm), w2, . . . , wm),

· · · = · · ·
f(uaN, w2, . . . , wm) = hN(u, f(u, w2, . . . , wm), w2, . . . , wm),

for all u, w2, . . . , wm ∈ Σ∗.

5.7. THE PRIMITIVE RECURSIVE FUNCTIONS 409

When m = 1, for some fixed w ∈ Σ∗, we have

f(ϵ) = w,

f(ua1) = h1(u, f(u)),

· · · = · · ·
f(uaN) = hN(u, f(u)),

for all u ∈ Σ∗.

For numerical functions (i.e., whenΣ = {a1}), the scheme
of primitive recursion is simpler:

f(0, x2, . . . , xm) = g(x2, . . . , xm),

f(x + 1, x2, . . . , xm) = h1(x, f(x, x2, . . . , xm), x2, . . . , xm),

for all x, x2, . . . , xm ∈ N.

410 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

The successor function S is the function

S(x) = x + 1.

Addition, multiplication, exponentiation, and
super-exponentiation can, be defined by primitive recur-
sion as follows (being a bit loose, we should use some
projections ...):

add(0, n) = n,

add(m + 1, n) = S(add(m,n)),

mult(0, n) = 0,

mult(m + 1, n) = add(mult(m,n), n),

rexp(0,m) = 1,

rexp(m + 1, n) = mult(rexp(m,n), n),

exp(m,n) = rexp ◦ (P 2
2 , P

2
1),

supexp(0, n) = 1,

supexp(m + 1, n) = exp(n, supexp(m,n)).

5.7. THE PRIMITIVE RECURSIVE FUNCTIONS 411

As an example over {a, b}∗, the following function
g : Σ∗ × Σ∗ → Σ∗, is defined by primitive recursion:

g(ϵ, v) = P 1
1 (v),

g(uai, v) = Si ◦ P 3
2 (u, g(u, v), v),

where 1 ≤ i ≤ N . It is easily verified that g(u, v) = vu.
Then,

f = g ◦ (P 2
2 , P

2
1)

computes the concatenation function, i.e. f(u, v) = uv.

412 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

Definition 5.15. Let Σ = {a1, . . . , aN}. The class
of primitive recursive functions is the smallest class of
functions (over Σ∗) which contains the base functions and
is closed under composition and primitive recursion.

We leave as an exercise to show that every primitive re-
cursive function is a total function. The class of primitive
recursive functions may not seem very big, but it con-
tains all the total functions that we would ever want to
compute.

Although it is rather tedious to prove, the following the-
orem can be shown.

5.7. THE PRIMITIVE RECURSIVE FUNCTIONS 413

Theorem 5.4. For an alphabet Σ = {a1, . . . , aN}, ev-
ery primitive recursive function is Turing computable.

The best way to prove the above theorem is to use the
computation model of RAM programs. Indeed, it was
shown in Theorem 5.2 that every RAM program can be
converted to a Turing machine.

It is also rather easy to show that the primitive recursive
functions are RAM-computable.

414 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

In order to define new functions it is also useful to use
predicates.

Definition 5.16. An n-ary predicate P (over Σ∗) is
any subset of (Σ∗)n. We write that a tuple (x1, . . . , xn)
satisfies P as (x1, . . . , xn) ∈ P or as P (x1, . . . , xn). The
characteristic function of a predicate P is the function
CP : (Σ∗)n → {a1}∗ defined by

Cp(x1, . . . , xn) =

{
a1 iff P (x1, . . . , xn)
ϵ iff not P (x1, . . . , xn).

A predicate P is primitive recursive iff its characteristic
function CP is primitive recursive.

We leave to the reader the obvious adaptation of the the
notion of primitive recursive predicate to functions de-
fined over N. In this case, 0 plays the role of ϵ and 1
plays the role of a1.

5.7. THE PRIMITIVE RECURSIVE FUNCTIONS 415

It is easily shown that if P and Q are primitive recursive
predicates (over (Σ∗)n), then P ∨Q, P ∧Q and ¬P are
also primitive recursive.

As an exercise, the reader may want to prove that the
predicate (defined over N):
prime(n) iff n is a prime number, is a primitive recursive
predicate.

For any fixed k ≥ 1, the function:
ord(k, n) = exponent of the kth prime in the prime fac-
torization of n, is a primitive recursive function.

We can also define functions by cases.

416 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

Lemma 5.5. If P1, . . . , Pn are pairwise disjoint primi-
tive recursive predicates (which means that Pi∩Pj = ∅
for all i ̸= j) and f1, . . . , fn+1 are primitive recursive
functions, the function g defined below is also primi-
tive recursive:

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f1(x) iff P1(x)
...
fn(x) iff Pn(x)
fn+1(x) otherwise.

(writing x for (x1, . . . , xn).)

It is also useful to have bounded quantification and bounded
minimization.

5.7. THE PRIMITIVE RECURSIVE FUNCTIONS 417

Definition 5.17. If P is an (n+ 1)-ary predicate, then
the bounded existential predicate ∃y/xP (y, z) holds iff
some prefix y of x makes P (y, z) true.

The bounded universal predicate ∀y/xP (y, z) holds iff
every prefix y of x makes P (y, z) true.

Lemma 5.6. If P is an (n+1)-ary primitive recursive
predicate, then ∃y/xP (y, z) and ∀y/xP (y, z) are also
primitive recursive predicates.

As an application, we can show that the equality predi-
cate, u = v?, is primitive recursive.

418 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

Definition 5.18. If P is an (n+ 1)-ary predicate, then
the bounded minimization of P , min y/xP (y, z), is the
function defined such that min y/xP (y, z) is the short-
est prefix of x such that P (y, z) if such a y exists, xa1
otherwise.

The bounded maximization of P , max y/xP (y, z), is
the function defined such that max y/xP (y, z) is the
longest prefix of x such that P (y, z) if such a y exists,
xa1 otherwise.

Lemma 5.7. If P is an (n+1)-ary primitive recursive
predicate, then min y/xP (y, z) and max y/xP (y, z) are
primitive recursive functions.

So far, the primitive recursive functions do not yield all
the Turing-computable functions. In order to get a larger
class of functions, we need the closure operation known
as minimization.

5.8. THE PARTIAL RECURSIVE FUNCTIONS 419

5.8 The Partial Recursive Functions

Minimization can be viewed as an abstract version of a
while loop.

Let Σ = {a1, . . . , aN}. For any function

g : Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ N , the function

f : Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
m

→ Σ∗

looks for the shortest string u over a∗j (for a given j) such
that

g(u,w1, . . . , wm) = ϵ :

u := ϵ;
while g(u,w1, . . . , wm) ̸= ϵ do
u := uaj;
endwhile
let f(w1, . . . , wm) = u

420 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

The operation of minimization (sometimes called mini-
malization) is defined as follows.

Definition 5.19. Let Σ = {a1, . . . , aN}. For any func-
tion

g : Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
m+1

→ Σ∗,

where m ≥ 0, for every j, 1 ≤ j ≤ N , the function

f : Σ∗ × · · ·× Σ∗︸ ︷︷ ︸
m

→ Σ∗,

is defined by minimization over {aj}∗ from g, if the
following conditions hold for all w1, . . . , wm ∈ Σ∗:

(1) f(w1, . . . , wm) is defined iff there is some n ≥ 0 such
that
g(apj, w1, . . . , wm) is defined for all p, 0 ≤ p ≤ n, and

g(anj , w1, . . . , wm) = ϵ.

5.8. THE PARTIAL RECURSIVE FUNCTIONS 421

(2) When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = anj ,

where n is such that

g(anj , w1, . . . , wm) = ϵ

and
g(apj, w1, . . . , wm) ̸= ϵ

for every p, 0 ≤ p ≤ n− 1.

We also write

f(w1, . . . , wm) = minju[g(u,w1, . . . , wm) = ϵ].

422 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

Note: When f(w1, . . . , wm) is defined,

f(w1, . . . , wm) = anj ,

where n is the smallest integer such that condition (1)
holds. It is very important to require that all the val-
ues g(apj, w1, . . . , wm) be defined for all p, 0 ≤ p ≤ n,
when defining f(w1, . . . , wm). Failure to do so allows
non-computable functions.

Remark : Kleene used the µ-notation :

f(w1, . . . , wm) = µju[g(u, w1, . . . , wm) = ϵ],

actually, its numerical form:

f(x1, . . . , xm) = µx[g(x, x1, . . . , xm) = 0],

5.8. THE PARTIAL RECURSIVE FUNCTIONS 423

The class of partial computable functions is defined as
follows.

Definition 5.20. Let Σ = {a1, . . . , aN}. The class of
partial recursive functions is the smallest class of par-
tial functions (over Σ∗) which contains the base functions
and is closed under composition, primitive recursion, and
minimization. The class of recursive functions is the
subset of the class of partial recursive functions consisting
of functions defined for every input (i.e., total functions).

424 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

One of the major results of computability theory is the
following theorem.

Theorem 5.8. For an alphabet Σ = {a1, . . . , aN}, ev-
ery partial recursive function is Turing-computable.
Conversely, every Turing-computable function is a par-
tial recursive function. Similarly, the class of recur-
sive functions is equal to the class of Turing-computable
functions that halt in a proper ID for every input.

To prove that every partial recursive function is indeed
Turing-computable, since by Theorem 5.2, every RAM
program can be converted to a Turing machine, the sim-
plest thing to do is to show that every partial recursive
function is RAM-computable.

5.8. THE PARTIAL RECURSIVE FUNCTIONS 425

For the converse, one can show that given a Turing ma-
chine, there is a primitive recursive function describing
how to go from one ID to the next. Then, minimiza-
tion is used to guess whether a computation halts. The
proof shows that every partial recursive function needs
minimization at most once. The characterization of the
recursive functions in terms of TM’s follows easily.

There are recursive functions that are not primitive recur-
sive. Such an example is given by Ackermann’s function.

426 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

Ackermann’s function: A recursive function which is
not primitive recursive:

A(0, y) = y + 1,

A(x + 1, 0) = A(x, 1),

A(x + 1, y + 1) = A(x, A(x + 1, y)).

It can be shown that:

A(0, x) = x + 1,

A(1, x) = x + 2,

A(2, x) = 2x + 3,

A(3, x) = 2x+3 − 3,

and

A(4, x) = 22
··
·2
16}

x − 3,

with A(4, 0) = 16− 3 = 13.

5.8. THE PARTIAL RECURSIVE FUNCTIONS 427

For example

A(4, 1) = 216 − 3, A(4, 2) = 22
16 − 3.

Actually, it is not so obvious that A is a total function.
This can be shown by induction, using the lexicographic
ordering ≼ on N×N, which is defined as follows:

(m,n) ≼ (m′, n′) iff either

m = m′ and n = n′, or

m < m′, or

m = m′ and n < n′.

We write (m,n) ≺ (m′, n′) when (m,n) ≼ (m′, n′) and
(m,n) ̸= (m′, n′).

We prove that A(m,n) is defined for all (m,n) ∈ N×N
by complete induction over the lexicographic ordering on
N×N.

428 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

In the base case, (m,n) = (0, 0), and since A(0, n) =
n + 1, we have A(0, 0) = 1, and A(0, 0) is defined.

For (m,n) ̸= (0, 0), the induction hypothesis is that
A(m′, n′) is defined for all (m′, n′) ≺ (m,n). We need to
conclude that A(m,n) is defined.

If m = 0, since A(0, n) = n + 1, A(0, n) is defined.

If m ̸= 0 and n = 0, since

(m− 1, 1) ≺ (m, 0),

by the induction hypothesis, A(m− 1, 1) is defined, but
A(m, 0) = A(m− 1, 1), and thus A(m, 0) is defined.

5.8. THE PARTIAL RECURSIVE FUNCTIONS 429

If m ̸= 0 and n ̸= 0, since

(m,n− 1) ≺ (m,n),

by the induction hypothesis, A(m, n−1) is defined. Since

(m− 1, A(m, n− 1)) ≺ (m,n),

by the induction hypothesis, A(m − 1, A(m, n − 1)) is
defined. But A(m,n) = A(m − 1, A(m, n − 1)), and
thus A(m, n) is defined.

Thus, A(m, n) is defined for all (m,n) ∈ N ×N. It is
possible to show that A is a recursive function, although
the quickest way to prove it requires some fancy machin-
ery (the recursion theorem).

Proving that A is not primitive recursive is harder.

The following lemma shows that restricting ourselves to
total functions is too limiting.

430 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

Let F be any set of total functions that contains the base
functions and is closed under composition and primitive
recursion (and thus, F contains all the primitive recursive
functions).

We say that a function f : Σ∗ × Σ∗ → Σ∗ is universal
for the one-argument functions in F iff for every function
g : Σ∗ → Σ∗ in F , there is some n ∈ N such that

f(an1 , u) = g(u)

for all u ∈ Σ∗.

Lemma 5.9. For any countable set F of total func-
tions containing the base functions and closed under
composition and primitive recursion, if f is a univer-
sal function for the functions g : Σ∗ → Σ∗ in F , then
f /∈ F .

5.8. THE PARTIAL RECURSIVE FUNCTIONS 431

Proof. Assume that the universal function f is in F . Let
g be the function such that

g(u) = f(a|u|1 , u)a1

for all u ∈ Σ∗. We claim that g ∈ F . It it enough to
prove that the function h such that

h(u) = a|u|1

is primitive recursive, which is easily shown.

Then, because f is universal, there is some m such that

g(u) = f(am1 , u)

for all u ∈ Σ∗. Letting u = am1 , we get

g(am1) = f(am1 , a
m
1) = f(am1 , a

m
1)a1,

a contradiction.

Thus, either a universal function for F is partial, or it is
not in F .

432 CHAPTER 5. RAM PROGRAMS, TURING MACHINES

