
Chapter 6

Universal RAM Programs and
Undecidability of the Halting Problem

6.1 Pairing Functions

Pairing functions are used to encode pairs of integers into
single integers, or more generally, finite sequences of inte-
gers into single integers.

We begin by exhibiting a bijective pairing function ,
J : N2 → N.

The function J has the graph partially showed below:

433



434 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

...

6 . . .

↘
3 7 . . .

↘ ↘
1 4 8 . . .

↘ ↘ ↘
0 2 5 9 . . .

The function J corresponds to a certain way of enumer-
ating pairs of integers. Note that the value of x + y is
constant along each diagonal, and consequently, we have

J(x, y) = 1 + 2 + · · · + (x + y) + x,

= ((x + y)(x + y + 1) + 2x)/2,

= ((x + y)2 + 3x + y)/2,

that is,

J(x, y) = ((x + y)2 + 3x + y)/2.



6.1. PAIRING FUNCTIONS 435

Let K : N→ N and L : N→ N be the projection func-
tions onto the axes, that is, the unique functions such
that

K(J(a, b)) = a and L(J(a, b)) = b,

for all a, b ∈ N.

Clearly, J is a recursive function (even primitive recur-
sive), since it is given by a polynomial.

It can be shown that J is injective and surjective, and that
it is strictly monotonic in each argument, which means
that for all x, x′, y, y′ ∈ N, if x < x′ then J(x, y) <
J(x′, y), and if y < y′ then J(x, y) < J(x, y′).

The projection functions K and L can be computed ex-
plicitly, although this is a bit tricky.



436 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We only need to observe that by monotonicity of J ,

x ≤ J(x, y) and y ≤ J(x, y),

and thus,

K(z) = min(x ≤ z)(∃y ≤ z)[J(x, y) = z],

and

L(z) = min(y ≤ z)(∃x ≤ z)[J(x, y) = z].

These functions can be computed by RAM programs in-
volving two nested loops. Thus, they are recursive (in
fact, primitive recursive).



6.1. PAIRING FUNCTIONS 437

More explicit formulae can be given for K and L.

If we define

Q1(z) = ⌊(⌊
√
8z + 1⌋ + 1)/2⌋ − 1

Q2(z) = 2z − (Q1(z))
2,

then it can be shown that

K(z) =
1

2
(Q2(z)−Q1(z))

L(z) = Q1(z)−
1

2
(Q2(z)−Q1(z)).

In the above formula, the functionm +→ ⌊
√
m⌋ yields the

largest integer s such that s2 ≤ m. It can be computed
by a RAM program.



438 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The pairing function J(x, y) is also denoted as ⟨x, y⟩, and
K and L are also denoted as Π1 and Π2.

By induction, we can define bijections between Nn and N

for all n ≥ 1. We let
⟨z⟩1 = z,

⟨x1, x2⟩2 = ⟨x1, x2⟩,
and

⟨x1, . . . , xn, xn+1⟩n+1 = ⟨x1, . . . , xn−1, ⟨xn, xn+1⟩⟩n.

Note that

⟨x1, . . . , xn, xn+1⟩n+1 = ⟨x1, ⟨x2, . . . , xn+1⟩n⟩.



6.1. PAIRING FUNCTIONS 439

We can define a uniform projection function , Π, with
the following property:
if z = ⟨x1, . . . , xn⟩, with n ≥ 2, then

Π(i, n, z) = xi

for all i, where 1 ≤ i ≤ n.

The function Π is defined by cases as follows:

Π(i, 0, z) = 0, for all i ≥ 0,

Π(i, 1, z) = z, for all i ≥ 0,

Π(i, 2, z) = Π1(z), if 0 ≤ i ≤ 1,

Π(i, 2, z) = Π2(z), for all i ≥ 2,

and for all n ≥ 2,

Π(i, n + 1, z) =

⎧
⎨

⎩

Π(i, n, z) if 0 ≤ i < n,
Π1(Π(n, n, z)) if i = n,
Π2(Π(n, n, z)) if i > n.



440 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

By a previous exercise, this is a legitimate (primitive)
recursive definition. Some basic properties of Π are given
as exercises. In particular, the following properties are
easily shown:

(a) ⟨0, . . . , 0⟩n = 0, ⟨x, 0⟩ = ⟨x, 0, . . . , 0⟩n;
(b) Π(0, n, z) = Π(1, n, z) and Π(i, n, z) = Π(n, n, z),

for all i ≥ n and all n, z ∈ N;

(c) ⟨Π(1, n, z), . . . ,Π(n, n, z)⟩n = z, for all n ≥ 1 and
all z ∈ N;

(d) Π(i, n, z) ≤ z, for all i, n, z ∈ N;

(e) There is a (primitive) recursive function Large, such
that,

Π(i, n + 1,Large(n + 1, z)) = z,

for i, n, z ∈ N.



6.1. PAIRING FUNCTIONS 441

As a first application, we observe that we need only con-
sider partial recursive functions of a single argument.

Indeed, let ϕ : Nn → N be a partial recursive function of
n ≥ 2 arguments. Let

ϕ(z) = ϕ(Π(1, n, z), . . . ,Π(n, n, z)),

for all z ∈ N.

Then, ϕ is a partial recursive function of a single argu-
ment, and ϕ can be recovered from ϕ, since

ϕ(x1, . . . , xn) = ϕ(⟨x1, . . . , xn⟩).

Thus, using ⟨−,−⟩ and Π as coding and decoding func-
tions, we can restrict our attention to functions of a single
argument.



442 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

It can be shown that there exist coding and decoding
functions between Σ∗ and {a1}∗, and that partial recur-
sive functions over Σ∗ can be recoded as partial recursive
functions over {a1}∗.

Since {a1}∗ is isomorphic to N, this shows that we can
restrict out attention to functions defined over N.



6.2. CODING OF RAM PROGRAMS 443

6.2 Coding of RAM Programs

In this Section, we present a specific encoding of RAM
programs which allows us to treat programs as integers.

Encoding programs as integers also allows us to have pro-
grams that take other programs as input, and we obtain
a universal program .

Universal programs have the property that given two in-
puts, the first one being the code of a program and the
second one an input data, the universal program simu-
lates the actions of the encoded program on the input
data.

A coding scheme is also called an indexing or a Gödel
numbering , in honor to Gödel, who invented this tech-
nique.



444 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

From results of the previous Chapter, without loss of gen-
erality, we can restrict out attention to RAM programs
computing partial functions of one argument over N.

Furthermore, we only need the following kinds of instruc-
tions, each instruction being coded as shown below. Be-
cause we are only considering functions over N, there is
only one kind of instruction of the form add and jmp (and
add increments by 1 the contents of the specified register
Rj).

Ni add Rj code = ⟨1, i, j, 0⟩
Ni tail Rj code = ⟨2, i, j, 0⟩
Ni continue code = ⟨3, i, 1, 0⟩
Ni Rj jmp Nka code = ⟨4, i, j, k⟩
Ni Rj jmp Nkb code = ⟨5, i, j, k⟩

Recall that a conditional jump causes a jump to the clos-
est address Nk above or below iff Rj is nonzero, and if
Rj is null, the next instruction is executed.



6.2. CODING OF RAM PROGRAMS 445

We assume that all lines in a RAM program are num-
bered. This is always feasible, by labeling unnamed in-
structions with a new and unused line number.

The code of an instruction I is denoted as #I . To
simplify the notation, we introduce the following decoding
primitive recursive functions Typ, Nam, Reg, and Jmp,
defined as follows:

Typ(x) = Π(1, 4, x),

Nam(x) = Π(2, 4, x),

Reg(x) = Π(3, 4, x),

Jmp(x) = Π(4, 4, x).

The functions yield the type, line number, register name,
and line number jumped to, if any, for an instruction
coded by x.

We can define the (primitive) recursive predicate INST,
such that INST(x) holds iff x codes an instruction.



446 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

First, we need the connective ⊃ (implies), defined such
that

P ⊃ Q iff ¬P ∨Q.

Then, INST(x) holds iff:

[1 ≤ Typ(x) ≤ 5] ∧ [1 ≤ Reg(x)]∧
[Typ(x) ≤ 3 ⊃ Jmp(x) = 0]∧
[Typ(x) = 3 ⊃ Reg(x) = 1]

Program are coded as follows. If P is a RAM program
composed of the n instructions I1, . . . , In, the code of P ,
denoted as #P , is

#P = ⟨n,#I1, . . . ,#In⟩.

Recall from a previous exercise that

⟨n,#I1, . . . ,#In⟩ = ⟨n, ⟨#I1, . . . ,#In⟩⟩.



6.2. CODING OF RAM PROGRAMS 447

Also recall that

⟨x, y⟩ = ((x + y)2 + 3x + y)/2.

Consider the following program Padd2 computing the
function add2 : N→ N given by

add2(n) = n + 2.

I1 : 1 add R1

I2 : 2 add R1

I3 : 3 continue

We have

#I1 = ⟨1, 1, 1, 0⟩4 = ⟨1, ⟨1, ⟨1, 0⟩⟩⟩ = 37

#I2 = ⟨1, 2, 1, 0⟩4 = ⟨1, ⟨2, ⟨1, 0⟩⟩⟩ = 92

#I3 = ⟨3, 3, 1, 0⟩4 = ⟨3, ⟨3, ⟨1, 0⟩⟩⟩ = 234



448 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

and

#Padd2 = ⟨3,#I1,#I2,#I3⟩4 = ⟨3, ⟨37, ⟨92, 234⟩⟩
= 1 018 748 519 973 070 618.

The codes get big fast!

We define the (primitive) recursive functions Ln, Pg, and
Line, such that:

Ln(x) = Π(1, 2, x),

Pg(x) = Π(2, 2, x),

Line(i, x) = Π(i,Ln(x),Pg(x)).

The function Ln yields the length of the program (the
number of instructions), Pg yields the sequence of instruc-
tions in the program (really, a code for the sequence), and
Line(i, x) yields the code of the ith instruction in the pro-
gram.

If x does not code a program, there is no need to interpret
these functions.



6.2. CODING OF RAM PROGRAMS 449

The (primitive) recursive predicate PROG is defined such
that PROG(x) holds iff x codes a program.

Thus, PROG(x) holds if each line codes an instruction,
each jump has an instruction to jump to, and the last
instruction is a continue. Thus, PROG(x) holds iff

∀i ≤ Ln(x)[i ≥ 1 ⊃
[INST(Line(i, x)) ∧ Typ(Line(Ln(x), x)) = 3

∧ [Typ(Line(i, x)) = 4 ⊃
∃j ≤ i− 1[j ≥ 1 ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]]∧
[Typ(Line(i, x)) = 5 ⊃
∃j ≤ Ln(x)[j > i ∧ Nam(Line(j, x)) = Jmp(Line(i, x))]]]]

Note that we have used the fact proved as an exercise
that if f is a (primitive) recursive function and P is a
(primitive) recursive predicate, then ∃x ≤ f(y)P (x) is
(primitive) recursive.



450 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We are now ready to prove a fundamental result in the
theory of algorithms. This result points out some of the
limitations of the notion of algorithm.

Theorem 6.1. (Undecidability of the halting prob-
lem) There is no RAM program Decider which halts
for all inputs and has the following property when
started with input x in register R1 and with input i in
register R2 (the other registers being set to zero):

(1) Decider halts with output 1 iff i codes a program
that eventually halts when started on input x (all
other registers set to zero).

(2) Decider halts with output 0 in R1 iff i codes a
program that runs forever when started on input x
in R1 (all other registers set to zero).

(3) If i does not code a program, then Decider halts
with output 2 in R1.



6.2. CODING OF RAM PROGRAMS 451

Proof. Assume that Decider is such a RAM program,
and let Q be the following program with a single input:

ProgramQ (code q)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

R2 ← R1

Decider

N1 continue

R1 jmp N1a

continue

Let i be the code of some program P .

Key point: the termination behavior of Q on input i
is exactly the opposite of the termination behavior of
Decider on input i and code i.

(1) If Decider says that program P coded by i halts on
input i, then R1 just after the continue in line N1
contains 1, and Q loops forever.

(2) If Decider says that program P coded by i loops
forever on input i, then R1 just after continue in
line N1 contains 0, and Q halts.



452 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The program Q can be translated into a program using
only instructions of type 1, 2, 3, 4, 5, described previously,
and let q be the code of this program.

Let us see what happens if we run the program Q on
input q in R1 (all other registers set to zero).

Just after execution of the assignment R2 ← R1, the
program Decider is started with q in both R1 and R2.

Since Decider is supposed to halt for all inputs, it even-
tually halts with output 0 or 1 in R1.

If Decider halts with output 1 in R1, then Q goes into
an infinite loop, while if Decider halts with output 0 in
R1, then Q halts.

But then, because of the definition of Decider, we see
that Decider says that Q halts when started on input
q iff Q loops forever on input q, and that Q loops forever
on input q iff Q halts on input q, a contradiction.

Therefore, Decider cannot exist.



6.2. CODING OF RAM PROGRAMS 453

If we identify the notion of algorithm with that of a RAM
program which halts for all inputs, the above theorem
says that there is no algorithm for deciding whether a
RAM program eventually halts for a given input.

We say that the halting problem for RAM programs is
undecidable (or unsolvable).

The above theorem also implies that the halting problem
for Turing machines is undecidable.

Indeed, if we had an algorithm for solving the halting
problem for Turing machines, we could solve the halt-
ing problem for RAM programs as follows: first, apply
the algorithm for translating a RAM program into an
equivalent Turing machine, and then apply the algorithm
solving the halting problem for Turing machines.

The argument is typical in computability theory and is
called a “reducibility argument.”



454 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Our next goal is to define a (primitive) recursive function
that describes the computation of RAM programs.

Assume that we have a RAM program P using n registers
R1, . . . , Rn, whose contents are denoted as r1, . . . , rn.

We can code r1, . . . , rn into a single integer ⟨r1, . . . , rn⟩.

Conversely, every integer x can be viewed as coding the
contents of R1, . . . , Rn, by taking the sequence
Π(1, n, x), . . . ,Π(n, n, x).



6.2. CODING OF RAM PROGRAMS 455

Actually, it is not necessary to know n, the number of
registers, if we make the following observation:

Reg(Line(i, x)) ≤ Line(i, x) ≤ Pg(x)

for all i, x ∈ N.

Then, if x codes a program, then R1, . . . , Rx certainly
include all the registers in the program. Also note that
from a previous exercise,

⟨r1, . . . , rn, 0, . . . , 0⟩ = ⟨r1, . . . , rn, 0⟩.

We now define the (primitive) recursive functions Nextline,
Nextcont, and Comp, describing the computation of RAM
programs.



456 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Definition 6.1. Let x code a program and let i be such
that 1 ≤ i ≤ Ln(x). The following functions are defined:

(1) Nextline(i, x, y) is the number of the next instruc-
tion to be executed after executing the ith instruction
in the program coded by x, where the contents of the
registers is coded by y.

(2) Nextcont(i, x, y) is the code of the contents of the
registers after executing the ith instruction in the pro-
gram coded by x, where the contents of the registers
is coded by y.

(3) Comp(x, y,m) = ⟨i, z⟩, where i and z are defined
such that after running the program coded by x for
m steps, where the initial contents of the program
registers are coded by y, the next instruction to be
executed is the ith one, and z is the code of the
current contents of the registers.



6.2. CODING OF RAM PROGRAMS 457

Lemma 6.2. The functions Nextline, Nextcont, and
Comp, are (primitive) recursive.

We can now prove that every RAM computable function
can be computed in such a way that only one while loop
is needed (all the other loops involve a fixed number of
iterations).

Such a function is partial recursive in the sense of Kleene.

Indeed, assume that x codes a program P .

We define the partial function End so that for all x, y,
where x codes a program P and y codes the contents of
its registers, End(x, y) is the number of steps for which
the computation of P runs before halting, if it halts.

If the program does not halt, then End(x, y) is undefined.



458 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

We define End(x, y) as

End(x, y) = minm[Π1(Comp(x, y,m)) = Ln(x)],

Since Comp(x, y,m) = ⟨i, z⟩, we have

Π1(Comp(x, y,m)) = i,

where i is the number (index) of the instruction reached
after running the program P coded by x with initial val-
ues of the registers coded by y for m steps.

Thus, P halts if i is the last instruction in P , namely
Ln(x), iff

Π1(Comp(x, y,m)) = Ln(x).



6.2. CODING OF RAM PROGRAMS 459

End is a partial recursive function; it can be computed by
a RAM program involving only one while loop searching
for the number of steps m.

However, in general, End is not a total function.

If ϕ is the partial recursive function computed by the
program P coded by x, then we have

ϕ(y) = Π1(Π2(Comp(x, ⟨y, 0⟩,End(x, ⟨y, 0⟩)))).

This is because if m = End(x, ⟨y, 0⟩) is the number of
steps after which the program P coded by x halts on
input y, then

Comp(x, ⟨y, 0⟩, m)) = ⟨Ln(x), z⟩,

where z is the code of the register contents when the
program stops.



460 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Consequently

z = Π2(Comp(x, ⟨y, 0⟩, m))

z = Π2(Comp(x, ⟨y, 0⟩,End(x, ⟨y, 0⟩))).

The value of the register R1 is Π1(z), that is

ϕ(y) = Π1(Π2(Comp(x, ⟨y, 0⟩,End(x, ⟨y, 0⟩)))).



6.2. CODING OF RAM PROGRAMS 461

Observe that ϕ is written in the form ϕ = g ◦min f , for
some (primitive) recursive functions f and g.

We can also exhibit a partial recursive function which
enumerates all the unary partial recursive functions. It is
a universal function .

Abusing the notation slightly, we will write ϕ(x, y) for
ϕ(⟨x, y⟩), viewing ϕ as a function of two arguments (how-
ever, ϕ is really a function of a single argument).

We define the function ϕuniv as follows:

ϕuniv(x, y) =

⎧
⎪⎨

⎪⎩

Π1(Π2(Comp(x, ⟨y, 0⟩,End(x, ⟨y, 0⟩))))
if PROG(x)

undefined otherwise.



462 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The function ϕuniv is a partial recursive function with the
following property: for every x coding a RAM program
P , for every input y,

ϕuniv(x, y) = ϕx(y),

the value of the partial recursive function ϕx computed
by the RAM program P coded by x.

If x does not code a program, then ϕuniv(x, y) is undefined
for all y.

By Lemma 5.9, ϕuniv is not recursive. Indeed, being an
enumerating function for the partial recursive functions,
it is an enumerating function for the total recursive func-
tions, and thus, it cannot be recursive.

Being a partial function saves us from a contradiction.

The existence of the function ϕuniv leads us to the notion
of an indexing of the RAM programs.



6.2. CODING OF RAM PROGRAMS 463

We can define a listing of the RAM programs as follows.

If x codes a program (that is, if PROG(x) holds) and P
is the program that x codes, we call this program P the
xth RAM program and denote it as Px.

If x does not code a program, we let Px be the program
that diverges for every input:

N1 add R1

N1 R1 jmp N1a

N1 continue

Therefore, in all cases, Px stands for the xth RAM pro-
gram.

Thus, we have a listing of RAM programs,
P0, P1, P2, P3, . . ., such that every RAM program (of the
restricted type considered here) appears in the list exactly
once, except for the “infinite loop” program.



464 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

For example, the program Padd2 (adding 2 to an integer)
appears as

P1 018 748 519 973 070 618.

In particular, note that ϕuniv being a partial recursive
function, it is computed by some RAM program UNIV
that has a code univ and is the program Puniv in the list.

Having an indexing of the RAM programs, we also have
an indexing of the partial recursive functions.

Definition 6.2. For every integer x ≥ 0, we let Px be
the RAM program coded by x as defined earlier, and ϕx

be the partial recursive function computed by Px.

For example, the function add2 (adding 2 to an integer)
appears as

ϕ1 018 748 519 973 070 618.



6.2. CODING OF RAM PROGRAMS 465

Remark : Kleene used the notation {x} for the partial
recursive function coded by x. Due to the potential con-
fusion with singleton sets, we follow Rogers, and use the
notation ϕx.

It is important to observe that different programs Px

and Py may compute the same function, that is, while
Px ̸= Py for all x ̸= y, it is possible that ϕx = ϕy.

In fact, it is undecidable whether ϕx = ϕy.

The existence of the universal function ϕuniv is sufficiently
important to be recorded in the following Lemma.

Lemma 6.3. For the indexing of RAM programs de-
fined earlier, there is a universal partial recursive func-
tion ϕuniv such that, for all x, y ∈ N, if ϕx is the par-
tial recursive function computed by Px, then

ϕx(y) = ϕuniv(⟨x, y⟩).



466 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

The program UNIV computing ϕuniv can be viewed as an
interpreter for RAM programs.

By giving the universal program UNIV the “program” x
and the “data” y, we get the result of executing program
Px on input y. We can view the RAM model as a stored
program computer .

By Theorem 6.1 and Lemma 6.3, the halting problem for
the single program UNIV is undecidable. Otherwise, the
halting problem for RAM programs would be decidable,
a contradiction.

It should be noted that the program UNIV can actually
be written (with a certain amount of pain).



6.3. UNDECIDABILITY AND REDUCIBILITY 467

6.3 Undecidability and Reducibility

In Section 5.6 we defined the recursively enumerable lan-
guages and the recursive languages in terms of Turing
machines.

In view of the equivalence of RAM-computability and
Turing- computability it will be convenient to define such
languages in terms of recursive or partial recursive func-
tions.

Given a set L ⊆ N of more generally L ⊆ Σ∗, recall that
the characteristic function CL of L is defined by

CL(x) =

{
1 if x ∈ L

0 if x /∈ L.

In other words, CL decides membership in L.

We have the following equivalent definitions of the recur-
sively enumerable languages and the recursive languages.



468 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Definition 6.3. A set L ⊆ N (or L ⊆ Σ∗) is recursive
(or decidable) if its characteristic function CL is total
recursive.

A set L ⊆ N (or L ⊆ Σ∗) is recursively enumerable
(or partially decidable) if it is the domain of a partial
recursive function.

A set L ⊆ N (or L ⊆ Σ∗) is undecidable iff L is not
recursive.

Thus, a set L is recursively enumerable iff there is a partial
recursive function f : N→ N (or f : Σ∗ → Σ∗) such that

f(x) is defined iff x ∈ L.

If we think of f as computed by a Turing machine, then
this is equivalent to Definition 5.11.



6.3. UNDECIDABILITY AND REDUCIBILITY 469

The following important result is a special case of Lemma
7.9.

Lemma 6.4. A set L ⊆ N (or L ⊆ Σ∗) is recursively
enumerable if and only if either L = ∅ or L it the
range of a total recursive function f ; that is, L = f(N)
(or L = f(Σ∗)).

Intuitively, the recursive function f is a method for effec-
tively listing all (and only) elements in L.

A closer look at the proof of the undecidability of the
halting problem (Theorem 6.1) shows that the set of codes
of RAM programs that halt on their own code as input

K = {x ∈ N | ϕx(x) is defined}

is not recursive.



470 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

However, since K is the domain of the partial recursive
function f(x) = ϕuniv(x, x), it is recursively enumerable.

Therefore, the set K is a set that is recursively enu-
merable but not recursive.

The set K is partially decidable but undecidable.

Lemma 6.5.A set L is recursive iff both L and L are
recursively enumerable.

For a proof, see the proof of Lemma 7.8.

From the above, we conclude that

K = {x ∈ N | ϕx(x) is undefined}

is not recursively enumerable.



6.3. UNDECIDABILITY AND REDUCIBILITY 471

The undecidability of the halting problem (Theorem 6.1)
also shows that the set

K0 = {⟨x, y⟩ ∈ N | ϕx(y) is defined}

is not recursive. This set is an encoding of the halting
problem.

However, since K0 is the domain of the partial recursive
function f(z) = ϕuniv(Π1(z),Π2(z)), it is recursively enu-
merable.

The set K0 is another set that is recursively enumer-
able but not recursive.

The set K0 is partially decidable but undecidable.

By Lemma 6.5, the set K0 is not recursively enumerable.



472 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Even more surprising, the set

TOTAL = {x | ϕx is a total function}

is not recursively enumerable. We will prove this later.

This shows that the notion of a total recursive function is
a very elusive notion, from a computable point of view.

We can’t even enumerate recursively the total recursive
functions!

Lemma 6.6. If f and g are any two (total) recursive
functions, then their composition g ◦ f is also (total)
recursive. Similarly, if f and g are any two partial
recursive functions, then their composition g ◦ f is
also partial recursive.

The above is easily proved using RAM programs.



6.3. UNDECIDABILITY AND REDUCIBILITY 473

Consider the set

H0 = {x ∈ N | ϕx(0) is defined},

the set of codes of RAM programs that halt on input 0.

We claim that H0 is not recursive, but how do we prove
this?

We use a technique known as reducibility.

We construct a (total) recursive function f such that:

Given an integer i, the code of the RAM program Pi, the
number f(i) is the code of the program Pf(i) obtained
from Pi by adding instructions before Pi to initialize reg-
ister R1 with the value i.

This new program Pf(i) ignores the initial value of its
input and replaces it by i. After that, it simulates Pi

on input i.



474 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Thus, observe that Pi halts on input i iff Pf(i) halts on
input 0 (since Pf(i) ignores its input and then simu-
lates Pi on input i).

This fact can be stated as

i ∈ K iff f(i) ∈ H0.

Therefore, if we had an algorithm to decide recursively
membership in H0, namely if CH0 was recursive, then we
would have an algorithm to decide recursively member-
ship in K, since CK = CH0 ◦ f is also recursive as the
composition of two recursive functions.

However K is not recursive, so H0 is not recursive either.

The above is an instance of reducibility.



6.3. UNDECIDABILITY AND REDUCIBILITY 475

Definition 6.4. Let A and B be subsets of N (or Σ∗).
We say that the set A is many-one reducible to the set
B if there is a total recursive function f : N → N (or
f : Σ∗ → Σ∗) such that

x ∈ A iff f(x) ∈ B for all x ∈ N.

We writeA ≤ B, and for short, we say thatA is reducible
to B.

Intuitively, deciding membership in B is as hard as de-
ciding membership in A.

This is because any method for deciding membership in
B can be converted to a method for deciding membership
in A by first applying f to the number (or string) to be
tested.



476 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Here is another example of the use of reducibility to show
that a set is not recursive.

Let us prove that

TOTAL = {x | ϕx is a total function}

is not recursive by providing a reduction from H0 to
TOTAL.

We construct a (total) recursive function f such that:

Given an integer i, the code of the RAM program Pi, the
number f(i) is the code of the program Pf(i) obtained
from Pi by adding instructions before Pi to initialize reg-
ister R1 with the value 0.

The program Pf(i) ignores the initial value of its input
and replaces it by 0. After that, it simulates Pi on
input 0.



6.3. UNDECIDABILITY AND REDUCIBILITY 477

Now, observe that Pi halts for input 0 iff Pf(i) halts
for all inputs (since Pf(i) ignores its input and then
simulates Pi on input 0).

This fact can be stated as

i ∈ H0 iff f(i) ∈ TOTAL.

Therefore, if we had an algorithm to decide recursively
membership in TOTAL, namely if CTOTAL was recursive,
then we would have an algorithm to decide recursively
membership in H0, since CH0 = CTOTAL ◦f is also recur-
sive as the composition of two recursive functions.

However H0 is not recursive, so TOTAL is not recursive
either.

We have the following general result.



478 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Lemma 6.7. Let A,B,C be subsets of N (or Σ∗). The
following properties hold:

(1) If A ≤ B and B ≤ C, then A ≤ C.

(2) If A ≤ B then A ≤ B.

(3) If A ≤ B and B is r.e., then A is r.e.

(4) If A ≤ B and A is not r.e., then B is not r.e.

(5) If A ≤ B and B is recursive, then A is recursive.

(6) If A ≤ B and A is not recursive, then B is not
recursive.

In most cases, we use (4) and (6).

A remarkable (and devastating) result of Rice shows that
all nontrivial sets of partial recursive functions are not
recursive.



6.3. UNDECIDABILITY AND REDUCIBILITY 479

Let C be any set of partial recursive functions.

We define the set PC as

PC = {x ∈ N | ϕx ∈ C}.

We can view C as a property of some of the partial re-
cursive functions. For example

C = {all total recursive functions}.

We say that C is nontrivial if C is neither empty nor the
set of all partial recursive functions.

Equivalently C is nontrivial iff PC ̸= ∅ and PC ̸= N.

Theorem 6.8. (Rice’s Theorem) For any set C of
partial recursive functions, the set

PC = {x ∈ N | ϕx ∈ C}

is nonrecursive unless C is trivial.



480 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

For proof of Theorem 6.8, see the proof of Theorem 7.6.
The idea is construct a reduction from K to PC, where
C is any nontrivial set of partial recursive functions.

Rice’s Theorem shows that all nontrivial properties of the
input/output behavior of programs are undecidable!

The scenario to apply Rice’s Theorem to a class C of
partial functions is to show that some partial recursive
function belongs to C (C is not empty), and that some
partial recursive function does not belong to C (C is
not all the partial recursive functions). This demonstrates
that C is nontrivial.

For example, in (a) of the next lemma, we need to exhibit
a constant (partial) recursive function, such as zero(n) =
0, and a nonconstant (partial) recursive function, such as
the identity function (or succ(n) = n + 1).



6.3. UNDECIDABILITY AND REDUCIBILITY 481

In particular, the following properties are undecidable.

Lemma 6.9. The following properties of partial re-
cursive functions are undecidable.

(a) A partial recursive function is a constant function.

(b) Given any integer y ∈ N, is y in the range of some
partial recursive function.

(c) Two partial recursive functions ϕx and ϕy are iden-
tical.

(d) A partial recursive function ϕx is equal to a given
partial recursive function ϕa.

(e) A partial recursive function yields output z on in-
put y, for any given y, z ∈ N.

(f) A partial recursive function diverges for some in-
put.

(g) A partial recursive function diverges for all input.

We conclude with the following crushing result which
shows that TOTAL is not only undecidable, but not even
partially decidable.



482 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

Lemma 6.10. The set

TOTAL = {x | ϕx is a total function}

is not recursively enumerable.

Proof. If TOTAL was r.e., then there would be a recursive
function f such that TOTAL = range(f). Define g as
follows:

g(x) = ϕf(x)(x) + 1 = ϕuniv(f(x), x) + 1

for all x ∈ N. Since f is total and ϕf(x) is total for all
x ∈ N, the function g is total recursive. Let e be an index
such that

g = ϕf(e).

Since g is total, g(e) is defined. Then, we have

g(e) = ϕf(e)(e) + 1 = g(e) + 1,

a contradiction. Hence, TOTAL is not r.e.



6.4. KLEENE’S T -PREDICATE 483

6.4 Kleene’s T -Predicate

The object of this Section is to show the existence of
Kleene’s T -predicate. This will yield another important
normal form. In addition, the T -predicate is a basic tool
in recursion theory.

In Section 6.2, we have encoded programs. The idea of
this Section is to also encode computations of RAM pro-
grams.

Assume that x codes a program, that y is some input
(not a code), and that z codes a computation of Px on
input y. The predicate T (x, y, z) is defined as follows:

T (x, y, z) holds iff x codes a RAM program, y is an input,
and z codes a halting computation of Px on input y.

We will show that T is (primitive) recursive.



484 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

First, we need to encode computations. We say that z
codes a computation of length n ≥ 1 if

z = ⟨n + 2, ⟨1, y0⟩, ⟨i1, y1⟩, . . . , ⟨in, yn⟩⟩,

where each ij is the physical location (not the line num-
ber) of the next instruction to be executed and each yj
codes the contents of the registers just before execution
of the instruction at the location ij. Thus, in−1 = Ln(x)
and in is irrelevant. Writing the definition of T is a little
simpler if we let in = Ln(x) + 1.

Also, y0 codes the initial contents of the registers, that is,
y0 = ⟨y, 0⟩, for some input y. We let Ln(z) = Π1(z).



6.4. KLEENE’S T -PREDICATE 485

Definition 6.5. The T -predicate is the (primitive) re-
cursive predicate defined as follows:

T (x, y, z) iff PROG(x) and (Ln(z) ≥ 3) and

∀j ≤ Ln(z)− 3[0 ≤ j ⊃
Nextline(Π1(Π(j + 2,Ln(z), z)), x,Π2(Π(j + 2,Ln(z), z)))

= Π1(Π(j + 3,Ln(z), z))

and

Nextcont(Π1(Π(j + 2,Ln(z), z)), x,Π2(Π(j + 2,Ln(z), z)))

= Π2(Π(j + 3,Ln(z), z))

and

Π1(Π(Ln(z)− 1,Ln(z), z)) = Ln(x) and

Π1(Π(2,Ln(z), z)) = 1 and

y = Π1(Π2(Π(2,Ln(z), z))) and

Π2(Π2(Π(2,Ln(z), z))) = 0]

The reader can verify that T (x, y, z) holds iff x codes
a RAM program, y is an input, and z codes a halting
computation of Px on input y.



486 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM

In order to extract the output of Px from z, we define the
(primitive) recursive function Res as follows:

Res(z) = Π1(Π2(Π(Ln(z),Ln(z), z))).

Using the T -predicate, we get the so-called Kleene normal
form.

Theorem 6.11. (Kleene Normal Form) Using the in-
dexing of the partial recursive functions defined ear-
lier, we have

ϕx(y) = Res[min z(T (x, y, z))],

where T (x, y, z) and Res are (primitive) recursive.

Note that the universal function ϕuniv can be defined as

ϕuniv(x, y) = Res[min z(T (x, y, z))].

There is another important property of the partial recur-
sive functions, namely, that composition is effective.



6.4. KLEENE’S T -PREDICATE 487

We need two auxiliary (primitive) recursive functions.
The function Conprogs creates the code of the program
obtained by concatenating the programs Px and Py, and
for i ≥ 2, Cumclr(i) is the code of the program which
clears registers R2, . . . , Ri.

To get Cumclr, we can use the function clr(i) such that
clr(i) is the code of the program

N1 tail Ri

N1 Ri jmp N1a

N continue

We leave it as an exercise to prove that clr, Conprogs,
and Cumclr, are (primitive) recursive.

Theorem 6.12.There is a (primitive) recursive func-
tion c such that

ϕc(x,y) = ϕx ◦ ϕy.



488 CHAPTER 6. UNIVERSAL RAM PROGRAMS AND THE HALTING PROBLEM


