
Chapter 7

Elementary Recursive Function
Theory

7.1 Acceptable Indexings

In a previous Section, we have exhibited a specific in-
dexing of the partial recursive functions by encoding the
RAM programs.

Using this indexing, we showed the existence of a univer-
sal function ϕuniv and of a recursive function c, with the
property that for all x, y ∈ N,

ϕc(x,y) = ϕx ◦ ϕy.
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It is natural to wonder whether the same results hold if a
different coding scheme is used or if a different model of
computation is used, for example, Turing machines.

What we are aiming at is to find some simple properties
of “nice” coding schemes that allow one to proceed with-
out using explicit coding schemes, as long as the above
properties hold.

Remarkably, such properties exist.

Furthermore, any two coding schemes having these prop-
erties are equivalent in a strong sense (effectively equiva-
lent), and so, one can pick any such coding scheme with-
out any risk of losing anything else because the wrong
coding scheme was chosen.

Such coding schemes, also called indexings, or Gödel num-
berings, or even programming systems, are called accept-
able indexings .
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Definition 7.1. An indexing of the partial recursive
functions is an infinite sequence ϕ0,ϕ1, . . . , of partial re-
cursive functions that includes all the partial recursive
functions of one argument (there might be repetitions,
this is why we are not using the term enumeration). An
indexing is universal if it contains the partial recursive
function ϕuniv such that

ϕuniv(i, x) = ϕi(x)

for all i, x ∈ N. An indexing is acceptable if it is universal
and if there is a total recursive function c for composition,
such that

ϕc(i,j) = ϕi ◦ ϕj

for all i, j ∈ N.

A very useful property of acceptable indexings is the so-
called “s-m-n Theorem”.
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Using the slightly loose notation ϕ(x1, . . . , xn) for
ϕ(⟨x1, . . . , xn⟩), the s-m-n theorem says the following.

Given a function ϕ considered as havingm+n arguments,
if we fix the values of the first m arguments and we let
the other n arguments vary, we obtain a function ψ of n
arguments. Then, the index of ψ depends in a recursive
fashion upon the index of ϕ and the first m arguments
x1, . . . , xm.

We can “pull” the first m arguments of ϕ into the index
of ψ.

Theorem 7.1. (The “s-m-n Theorem”) For any ac-
ceptable indexing ϕ0,ϕ1, . . . , there is a total recur-
sive function s, such that, for all i,m, n ≥ 1, for all
x1, . . . , xm and all y1, . . . , yn, we have

ϕs(i,m,x1,...,xm)(y1, . . . , yn) = ϕi(x1, . . . , xm, y1, . . . , yn).
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As a first application of the s-m-n Theorem, we show
that any two acceptable indexings are effectively inter-
translatable.

Theorem 7.2. Let ϕ0,ϕ1, . . . , be a universal index-
ing, and let ψ0,ψ1, . . . , be any indexing with a total
recursive s-1-1 function, that is, a function s such
that

ψs(i,1,x)(y) = ψi(x, y)

for all i, x, y ∈ N. Then, there is a total recursive
function t such that ϕi = ψt(i).

Using Theorem 7.2, if we have two acceptable index-
ings ϕ0,ϕ1, . . . , and ψ0,ψ1, . . ., there exist total recursive
functions t and u such that

ϕi = ψt(i) and ψi = ϕu(i)

for all i ∈ N.
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Also note that if the composition function c is primitive
recursive, then any s-m-n function is primitive recursive,
and the translation functions are primitive recursive.

Actually, a stronger result can be shown. It can be shown
that for any two acceptable indexings, there exist total
recursive injective and surjective translation functions.

In other words, any two acceptable indexings are recur-
sively isomorphic (Roger’s isomorphism theorem). Next,
we turn to algorithmically unsolvable, or undecidable,
problems.
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7.2 Undecidable Problems

We saw in Section 6.2 that the halting problem for RAM
programs is undecidable. In this section, we take a slightly
more general approach to study the undecidability of
problems, and give some tools for resolving decidability
questions.

First, we prove again the undecidability of the halting
problem, but this time, for any indexing of the partial
recursive functions.

Theorem 7.3. (Halting Problem, Abstract Version)
Let ψ0,ψ1, . . . , be any indexing of the partial recursive
functions. Then, the function f defined such that

f(x, y) =

{
1 if ψx(y) is defined,
0 if ψx(y) is undefined,

is not recursive.
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Proof. Assume that f is recursive, and let g be the func-
tion defined such that

g(x) = f(x, x)

for all x ∈ N. Then g is also recursive.

Let θ be the function defined such that

θ(x) =

{
0 if g(x) = 0,
undefined if g(x) = 1.

We claim that θ is not even partial recursive. Observe
that θ is such that

θ(x) =

{
0 if ψx(x) is undefined,
undefined if ψx(x) is defined.
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If θ was partial recursive, it would occur in the list as
some ψi, and we would have

θ(i) = ψi(i) = 0 iff ψi(i) is undefined,

a contradiction. Therefore, f and g can’t be recursive.

The function g defined in the proof of Theorem 7.3 is the
characteristic function of a set denoted as K, where

K = {x | ψx(x) is defined}.

The set K is an example of a set which is not recursive.
Since this fact is quite important, we give the following
definition.
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Definition 7.2. A subset of Σ∗ (or a subset of N) is
recursive (or decidable) iff its characteristic function is a
total recursive function.

Using Definition 7.2, Theorem 7.3 can be restated as fol-
lows.

Lemma 7.4. For any indexing ϕ0,ϕ1, . . . of the par-
tial recursive functions (over Σ∗ or N), the set K =
{x | ϕx(x) is defined} is not recursive.

Recursive sets allow us to define the concept of a decidable
(or undecidable) problem.

The idea is to generalize the situation described in Section
6.2 and Section 6.4, where a set of objects, the RAM
programs, is encoded into a set of natural numbers, using
a coding scheme.
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Definition 7.3. Let C be a countable set of objects,
and let P be a property of objects in C. We view P as
the set

{a ∈ C | P (a)}.
A coding-scheme is an injective function #: C → N

that assigns a unique code to each object in C.

The property P is decidable (relative to #) iff the set

{#(a) | a ∈ C and P (a)}

is recursive.

The property P is undecidable (relative to #) iff the set

{#(a) | a ∈ C and P (a)}

is not recursive.
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Observe that the decidability of a property P of objects
in C depends upon the coding scheme #.

Thus, if we are cheating in using a non-effective cod-
ing scheme, we may declare that a property is decidabe
even though it is not decidable in some reasonable coding
scheme.

Consequently, we require a coding scheme # to be effec-
tive in the following sense.

Given any object a ∈ C, we can effectively (i.e.. algo-
rithmically) determine its code #(a).

Conversely, given any integer n ∈ N, we should be able
to tell effectively if n is the code of some object in C, and
if so, to find this object.
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In practice, it is always possible to describe the objects
in C as strings over some (possibly complex) alphabet Σ
(sets of trees, graphs, etc).

For example, the equality of the partial functions ϕx and
ϕy can be coded as the set

{⟨x, y⟩ | x, y ∈ N, ϕx = ϕy}.

We now show that most properties about programs (ex-
cept the trivial ones) are undecidable.

First, we show that it is undecidable whether a RAM
program halts for every input. In other words, it is unde-
cidable whether a procedure is an algorithm. We actually
prove a more general fact.
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Lemma 7.5. For any acceptable indexing ϕ0,ϕ1, . . .
of the partial recursive functions, the set

TOTAL = {x | ϕx is a total function}

is not recursive.

Proof. The proof uses a technique known as reducibility.

We try to reduce a set A known to be nonrecursive to
TOTAL via a recursive function f : A → TOTAL, so
that

x ∈ A iff f(x) ∈ TOTAL.
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If TOTAL were recursive, its characteristic function g
would be recursive, and thus, the function g ◦ f would
be recursive, a contradiction, since A is assumed to be
nonrecursive.

In the present case, we pick A = K.

To find the recursive function f : K → TOTAL, we use
the s-m-n Theorem.

Let θ be the function defined below: for all x, y ∈ N,

θ(x, y) =
{
ϕx(x) if x ∈ K,
undefined if x /∈ K.

Note that θ does not depend on y.
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The function θ is partial recursive. Indeed, we have

θ(x, y) = ϕx(x) = ϕuniv(x, x).

Thus, θ has some index j, so that θ = ϕj, and by the
s-m-n Theorem, we have

ϕs(j,1,x)(y) = ϕj(x, y) = θ(x, y).

Let f be the recursive function defined such that

f(x) = s(j, 1, x)

for all x ∈ N. Then, we have

ϕf(x)(y) =
{
ϕx(x) if x ∈ K,
undefined if x /∈ K

for all y ∈ N.
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Thus, observe that ϕf(x) is a total function iff x ∈ K,
that is,

x ∈ K iff f(x) ∈ TOTAL,

where f is recursive. As we explained earlier, this shows
that TOTAL is not recursive.

The above argument can be generalized to yield a result
known as Rice’s Theorem.

Let ϕ0,ϕ1, . . . be any indexing of the partial recursive
functions, and let C be any set of partial recursive func-
tions.

We define the set PC as

PC = {x ∈ N | ϕx ∈ C}.
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We can view C as a property of some of the partial re-
cursive functions. For example

C = {all total recursive functions}.

We say that C is nontrivial if C is neither empty nor the
set of all partial recursive functions.

Equivalently C is nontrivial iff PC ̸= ∅ and PC ̸= N.

Theorem 7.6. (Rice’s Theorem) For any acceptable
indexing ϕ0,ϕ1, . . . of the partial recursive functions,
for any set C of partial recursive functions, the set

PC = {x ∈ N | ϕx ∈ C}

is nonrecursive unless C is trivial.
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Proof. Assume that C is nontrivial. A set is recursive iff
its complement is recursive (the proof is trivial).

Hence, we may assume that the totally undefined function
is not in C, and since C ̸= ∅, let ψ be some other function
in C.

We produce a recursive function f such that

ϕf(x)(y) =

{
ψ(y) if x ∈ K,
undefined if x /∈ K,

for all y ∈ N.

We get f by using the s-m-n Theorem. Let ψ = ϕi, and
define θ as follows:

θ(x, y) = ϕuniv(i, y) + (ϕuniv(x, x)− ϕuniv(x, x)),

where − is the primitive recursive function for truncated
subtraction.

Clearly, θ is partial recursive, and let θ = ϕj.
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By the s-m-n Theorem, we have

ϕs(j,1,x)(y) = ϕj(x, y) = θ(x, y)

for all x, y ∈ N. Letting f be the recursive function such
that

f(x) = s(j, 1, x),

by definition of θ, we get

ϕf(x)(y) = θ(x, y) =
{
ψ(y) if x ∈ K,
undefined if x /∈ K.

Thus, f is the desired reduction function.
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Now, we have

x ∈ K iff f(x) ∈ PC,

and thus, the characteristic function CK of K is equal to
CP ◦ f , where CP is the characteristic function of PC.

Therefore, PC is not recursive, since otherwise, K would
be recursive, a contradiction.

Rice’s Theorem shows that all nontrivial properties of the
input/output behavior of programs are undecidable! In
particular, the following properties are undecidable.
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Lemma 7.7. The following properties of partial re-
cursive functions are undecidable.

(a) A partial recursive function is a constant function.

(b) Given any integer y ∈ N, is y in the range of some
partial recursive function.

(c) Two partial recursive functions ϕx and ϕy are iden-
tical.

(d) A partial recursive function ϕx is equal to a given
partial recursive function ϕa.

(e) A partial recursive function yields output z on in-
put y, for any given y, z ∈ N.

(f) A partial recursive function diverges for some in-
put.

(g) A partial recursive function diverges for all input.
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A property may be undecidable although it is partially
decidable. By partially decidable, we mean that there
exists a recursive function g that enumerates the set PC =
{x | ϕx ∈ C}.

This means that there is a recursive function g whose
range is PC.

We say that PC is recursively enumerable. Indeed, g
provides a recursive enumeration of PC, with possible rep-
etitions.
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7.3 Recursively Enumerable Sets

Consider the set

A = {x ∈ N | ϕx(a) is defined},

where a ∈ N is any fixed natural number.

By Rice’s Theorem, A is not recursive (check this).

We claim that A is the range of a recursive function g.
For this, we use the T -predicate.

We produce a function which is actually primitive recur-
sive.

First, note that A is nonempty (why?), and let x0 be any
index in A.

We define g by primitive recursion as follows:
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g(0) = x0,

g(x + 1) =

{
Π1(x) if T (Π1(x), a,Π2(x)),
x0 otherwise.

Since this type of argument is new, it is helpful to explain
informally what g does.

For every input x, the function g tries finitely many steps
of a computation on input a of some partial recursive
function.

The computation is given by Π2(x), and the partial func-
tion is given by Π1(x).

Since Π1 and Π2 are projection functions, when x ranges
over N, both Π1(x) and Π2(x) also range over N.

Such a process is called a dovetailing computation.
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Therefore all computations on input a for all partial recur-
sive functions will be tried, and the indices of the partial
recursive functions converging on input a will be selected.

Definition 7.4. A subset X of N is recursively enu-
merable iff either X = ∅, or X is the range of some total
recursive function. Similarly, a subset X of Σ∗ is recur-
sively enumerable iff either X = ∅, or X is the range of
some total recursive function.

For short, a recursively enumerable set is also called
an r.e. set . A recursively enumerable set is sometimes
called a partially decidable set.

The following Lemma relates recursive sets and recur-
sively enumerable sets.
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Lemma 7.8. A set A is recursive iff both A and its
complement A are recursively enumerable.

Proof. Assume that A is recursive. Then, it is trivial that
its complement is also recursive.

Hence, we only have to show that a recursive set is recur-
sively enumerable.

The empty set is recursively enumerable by definition.
Otherwise, let y ∈ A be any element. Then, the function
f defined such that

f(x) =

{
x iff CA(x) = 1,
y iff CA(x) = 0,

for all x ∈ N is recursive and has range A.

Conversely, assume that both A and A are recursively
enumerable.



516 CHAPTER 7. ELEMENTARY RECURSIVE FUNCTION THEORY

If either A or A is empty, then A is recursive.

Otherwise, let A = f(N) and A = g(N), for some recur-
sive functions f and g.

We define the function CA as follows:

CA(x) =
{
1 if f(min y[f(y) = x ∨ g(y) = x]) = x,
0 otherwise.

The function CA lists A and A in parallel, waiting to see
whether x turns up in A or in A.

Note that x must eventually turn up either in A or in A,
so that CA is a total recursive function.

Our next goal is to show that the recursively enumerable
sets can be given several equivalent definitions. We will
often abbreviate recursively enumerable as r.e.
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Lemma 7.9. For any subset A of N, the following
properties are equivalent:

(1) A is empty or A is the range of a primitive recur-
sive function.

(2) A is recursively enumerable.

(3) A is the range of a partial recursive function.

(4) A is the domain of a partial recursive function.

More intuitive proofs of the implications (3) ⇒ (4) and
(4)⇒ (1) can be given.
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Assume that A ̸= ∅ and that A = range(g), where g is
a partial recursive function.

Assume that g is computed by a RAM program P .

To compute f(x), we start computing the sequence

g(0), g(1), . . .

looking for x. If x turns up as say g(n), then we output
n.

Otherwise the computation diverges. Hence, the domain
of f is the range of g.

Assume now that A is the domain of some partial recur-
sive function g, and that g is computed by some Turing
machine M .
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We construct another Turing machine performing the fol-
lowing steps:

(0) Do one step of the computation of g(0)

. . .

(n) Do n + 1 steps of the computation of g(0)

Do n steps of the computation of g(1)

. . .

Do 2 steps of the computation of g(n− 1)

Do 1 step of the computation of g(n)

During this process, whenever the computation of some
g(m) halts, we output m.
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In this fashion, we will enumerate the domain of g, and
since we have constructed a Turing machine that halts
for every input, we have a total recursive function.

The following Lemma can easily be shown using the proof
technique of Lemma 7.9.

Lemma 7.10. The following properties hold.

(1) There is a recursive function h such that

range(ϕx) = dom(ϕh(x))

for all x ∈ N.

(2) There is a recursive function k such that

dom(ϕx) = range(ϕk(x))

and ϕk(x) is total recursive, for all x ∈ N such that
dom(ϕx) ̸= ∅.
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Using Lemma 7.9, we can prove that K is an r.e. set.

Indeed, we have K = dom(f), where

f(x) = ϕuniv(x, x)

for all x ∈ N.

The set

K0 = {⟨x, y⟩ | ϕx(y) converges}

is also an r.e. set, since K0 = dom(g), where

g(z) = ϕuniv(Π1(z),Π2(z)),

which is partial recursive.

The sets K and K0 are examples of r.e. sets that are not
recursive.
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We can now prove that there are sets that are not r.e.

Lemma 7.11. For any indexing of the partial recur-
sive functions, the complement K of the set

K = {x ∈ N | ϕx(x) converges}

is not recursively enumerable.

Proof. If K was recursively enumerable, since K is also
recusively enumerable, by Lemma 7.8, the set K would
be recursive, a contradiction.

The sets K and K0 are examples of sets that are not r.e.

This shows that the r.e. sets are not closed under comple-
mentation. However, we leave it as an exercise to prove
that the r.e. sets are closed under union and intersection.
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We will prove later on that TOTAL is not r.e.

This is rather unpleasant. Indeed, this means that there
is no way of effectively listing all algorithms (all total
recursive functions).

Hence, in a certain sense, the concept of partial recursive
function (procedure) is more natural than the concept of
a (total) recursive function (algorithm).

The next two Lemmas give other characterizations of the
r.e. sets and of the recursive sets.
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Lemma 7.12. The following properties hold.

(1) A set A is r.e. iff either it is finite or it is the
range of an injective recursive function.

(2) A set A is r.e. if either it is empty or it is the
range of a monotonic partial recursive function.

(3) A set A is r.e. iff there is a Turing machine M
such that, for all x ∈ N, M halts on x iff x ∈ A.

Lemma 7.13. A set A is recusive iff either it is fi-
nite or it is the range of a strictly increasing recursive
function.



7.3. RECURSIVELY ENUMERABLE SETS 525

Another important result relating the concept of partial
recursive function and that of an r.e set is given below.

Theorem 7.14. For every unary partial function f ,
the following properties are equivalent:

(1) f is partial recursive.

(2) The set
{⟨x, f(x)⟩ | x ∈ dom(f)}

is r.e.

Using our indexing of the partial recursive functions and
Lemma 7.9, we obtain an indexing of the r.e sets.
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Definition 7.5. For any acceptable indexing ϕ0,ϕ1, . . .
of the partial recursive functions, we define the enumera-
tion W0,W1, . . . of the r.e. sets by setting

Wx = dom(ϕx).

We now describe a technique for showing that certain
sets are r.e but not recursive, or complements of r.e. sets
that are not recursive, or not r.e, or neither r.e. nor the
complement of an r.e. set.

This technique is known as reducibility .
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7.4 Reducibility and Complete Sets

We already used the notion of reducibility in the proof of
Lemma 7.5 to show that TOTAL is not recursive.

Definition 7.6. Let A and B be subsets of N (or Σ∗).
We say that the set A is many-one reducible to the set
B if there is a total recursive function f : N → N (or
f : Σ∗ → Σ∗) such that

x ∈ A iff f(x) ∈ B for all x ∈ N.

We writeA ≤ B, and for short, we say thatA is reducible
to B.
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Lemma 7.15. Let A,B,C be subsets of N (or Σ∗).
The following properties hold:

(1) If A ≤ B and B ≤ C, then A ≤ C.

(2) If A ≤ B then A ≤ B.

(3) If A ≤ B and B is r.e., then A is r.e.

(4) If A ≤ B and A is not r.e., then B is not r.e.

(5) If A ≤ B and B is recursive, then A is recursive.

(6) If A ≤ B and A is not recursive, then B is not
recursive.

Another important concept is the concept of a complete
set.
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Definition 7.7.An r.e. set A is complete w.r.t. many-
one reducibility iff every r.e. set B is reducible to A, i.e.,
B ≤ A.

For simplicity, we will often say complete for complete
w.r.t. many-one reducibility .

Theorem 7.16. The following properties hold:

(1) If A is complete, B is r.e., and A ≤ B, then B is
complete.

(2) K0 is complete.

(3) K0 is reducible to K.

As a corollary of Theorem 7.16, the setK is also complete.
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Definition 7.8.Two setsA andB have the same degree
of unsolvability or are equivalent iff A ≤ B and B ≤ A.

Since K and K0 are both complete, they have the same
degree of unsolvability.

We will now investigate the reducibility and equivalence
of various sets. Recall that

TOTAL = {x ∈ N | ϕx is total}.

We define EMPTY and FINITE, as follows:

EMPTY = {x ∈ N | ϕx is undefined for all input},
FINITE = {x ∈ N | ϕx has a finite domain}.
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Then,

FINITE = {x ∈ N | ϕx has an infinite domain},

so that,

EMPTY ⊂ FINITE and TOTAL ⊂ FINITE.

Lemma 7.17.We have K0 ≤ EMPTY.

Lemma 7.18. The following properties hold:

(1) EMPTY is not r.e.

(2) EMPTY is r.e.

(3) K and EMPTY are equivalent.

(4) EMPTY is complete.
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Lemma 7.19. The following properties hold:

(1) TOTAL and TOTAL are not r.e.

(2) FINITE and FINITE are not r.e.

From Lemma 7.19, we have TOTAL ≤ FINITE. It turns
out that FINITE ≤ TOTAL, and TOTAL and FINITE
are equivalent.

Lemma 7.20.The sets TOTAL and FINITE are equiv-
alent.

We now turn to the recursion Theorem.
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7.5 The Recursion Theorem

The recursion Theorem, due to Kleene, is a fundamental
result in recursion theory.

Theorem 7.21. (Recursion Theorem, Version 1) Let
ϕ0,ϕ1, . . . be any acceptable indexing of the partial re-
cursive functions. For every total recursive function
f , there is some n such that

ϕn = ϕf(n).

The recursion Theorem can be strengthened as follows.

Theorem 7.22. (Recursion Theorem, Version 2) Let
ϕ0,ϕ1, . . . be any acceptable indexing of the partial re-
cursive functions. There is a total recursive function
h such that for all x ∈ N, if ϕx is total, then

ϕϕx(h(x)) = ϕh(x).
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A third version of the recursion Theorem is given below.

Theorem 7.23. (Recursion Theorem, Version 3) For
all n ≥ 1, there is a total recursive function h of n+1
arguments, such that for all x ∈ N, if ϕx is a total
recursive function of n + 1 arguments, then

ϕϕx(h(x,x1,...,xn),x1,...,xn) = ϕh(x,x1,...,xn),

for all x1, . . . , xn ∈ N.

As a first application of the recursion theorem, we can
show that there is an index n such that ϕn is the constant
function with output n.

Loosely speaking, ϕn prints its own name. Let f be the
recursive function such that

f(x, y) = x

for all x, y ∈ N.
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By the s-m-n Theorem, there is a recursive function g
such that

ϕg(x)(y) = f(x, y) = x

for all x, y ∈ N.

By the recursion Theorem 7.21, there is some n such that

ϕg(n) = ϕn,

the constant function with value n.

As a second application, we get a very short proof of
Rice’s Theorem.

Let C be such that PC ̸= ∅ and PC ̸= N, and let j ∈ PC

and k ∈ N− PC.
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Define the function f as follows:

f(x) =

{
j if x /∈ PC ,
k if x ∈ PC ,

If PC is recursive, then f is recursive. By the recursion
Theorem 7.21, there is some n such that

ϕf(n) = ϕn.

But then, we have

n ∈ PC iff f(n) /∈ PC

by definition of f , and thus,

ϕf(n) ̸= ϕn,

a contradiction.

Hence, PC is not recursive.

As a third application, we have the following Lemma.
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Lemma 7.24. Let C be a set of partial recursive func-
tions and let

A = {x ∈ N | ϕx ∈ C}.

The set A is not reducible to its complement A.

The recursion Theorem can also be used to show that
functions defined by recursive definitions other than prim-
itive recursion are partial recursive.

This is the case for the function known as Ackermann’s
function , defined recursively as follows:

f(0, y) = y + 1,

f(x + 1, 0) = f(x, 1),

f(x + 1, y + 1) = f(x, f(x + 1, y)).

It can be shown that this function is not primitive re-
cursive. Intuitively, it outgrows all primitive recursive
functions.
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However, f is recursive, but this is not so obvious.

We can use the recursion Theorem to prove that f is
recursive. Consider the following definition by cases:

g(n, 0, y) = y + 1,

g(n, x + 1, 0) = ϕuniv(n, x, 1),

g(n, x + 1, y + 1) = ϕuniv(n, x,ϕuniv(n, x + 1, y)).

Clearly, g is partial recursive. By the s-m-n Theorem,
there is a recursive function h such that

ϕh(n)(x, y) = g(n, x, y).

By the recursion Theorem, there is an m such that

ϕh(m) = ϕm.

Therefore, the partial recursive function ϕm(x, y) satisfies
the definition of Ackermann’s function.
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We showed in a previous Section that ϕm(x, y) is a to-
tal function, and thus, Ackermann’s function is a total
recursive function.

Hence, the recursion Theorem justifies the use of certain
recursive definitions. However, note that there are some
recursive definition that are only satisfied by the com-
pletely undefined function.

In the next Section, we prove the extended Rice Theorem.
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7.6 Extended Rice Theorem

The extended Rice Theorem characterizes the sets of par-
tial recursive functions C such that PC is r.e.

First, we need to discuss a way of indexing the partial
recursive functions that have a finite domain.

Using the uniform projection function Π, we define the
primitive recursive function F such that

F (x, y) = Π(y + 1,Π1(x) + 1,Π2(x)).

We also define the sequence of partial functions P0, P1, . . .
as follows:

Px(y) =
{
F (x, y)− 1 if 0 < F (x, y) and y < Π1(x) + 1,
undefined otherwise.



7.6. EXTENDED RICE THEOREM 541

Lemma 7.25. Every Px is a partial recursive func-
tion with finite domain, and every partial recursive
function with finite domain is equal to some Px.

The easy part of the extended Rice Theorem is the fol-
lowing lemma.

Recall that given any two partial functions f : A → B
and g : A→ B, we say that g extends f iff f ⊆ g, which
means that g(x) is defined whenever f(x) is defined, and
if so, g(x) = f(x).

Lemma 7.26. Let C be a set of partial recursive func-
tions. If there is an r.e. set A such that, ϕx ∈ C iff
there is some y ∈ A such that ϕx extends Py, then
PC = {x | ϕx ∈ C} is r.e.
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Proof. Lemma 7.26 can be restated as

PC = {x | ∃y ∈ A, Py ⊆ ϕx}.

If A is empty, so is PC, and PC is r.e.

Otherwise, let f be a recursive function such that

A = range(f).

Let ψ be the following partial recursive function:

ψ(z) =
{
Π1(z) if Pf(Π2(z)) ⊆ ϕΠ1(z),
undefined otherwise.

It is clear that
PC = range(ψ).

To see that ψ is partial recursive, write ψ(z) as follows:

ψ(z) =

⎧
⎪⎨

⎪⎩

Π1(z) if ∀w ≤ Π1(f(Π2(z)))
[F (f(Π2(z)), w) > 0 ⊃
ϕΠ1(z)(w) = F (f(Π2(z)), w)− 1],

undefined otherwise.
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To establish the converse of Lemma 7.26, we need two
Lemmas.

Lemma 7.27. If PC is r.e. and ϕ ∈ C, then there is
some Py ⊆ ϕ such that Py ∈ C.

As a corollary of Lemma 7.27, we note that TOTAL is
not r.e.

Lemma 7.28. If PC is r.e., ϕ ∈ C, and ϕ ⊆ ψ, where
ψ is a partial recursive function, then ψ ∈ C.

Observe that Lemma 7.28 yields a new proof that TOTAL
is not r.e. Finally, we can prove the extended Rice The-
orem.
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Theorem 7.29. (Extended Rice Theorem) The set
PC is r.e. iff there is an r.e. set A such that

ϕx ∈ C iff ∃y ∈ A (Py ⊆ ϕx).

Proof. Let PC = dom(ϕi). Using the s-m-n Theorem,
there is a recursive function k such that

ϕk(y) = Py

for all y ∈ N.

Define the r.e. set A such that

A = dom(ϕi ◦ k).
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Then,

y ∈ A iff ϕi(k(y)) ↓ iff Py ∈ C.

Next, using Lemma 7.27 and Lemma 7.28, it is easy to
see that

ϕx ∈ C iff ∃y ∈ A (Py ⊆ ϕx).
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7.7 Creative and Productive Sets

In this section, we discuss some special sets that have
important applications in logic: creative and productive
sets .

The concepts to be described are illustrated by the fol-
lowing situation. Assume that

Wx ⊆ K

for some x ∈ N.

We claim that
x ∈ K −Wx.

Indeed, if x ∈ Wx, then ϕx(x) is defined, and by defini-
tion of K, we get x /∈ K, a contradiction.

Therefore, ϕx(x) must be undefined, that is,

x ∈ K −Wx.
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The above situation can be generalized as follows.

Definition 7.9. A set A is productive iff there is a total
recursive function f such that

if Wx ⊆ A then f(x) ∈ A−Wx

for all x ∈ N. The function f is called the productive
function of A. A set A is creative if it is r.e. and if its
complement A is productive.

As we just showed, K is creative and K is productive.
The following facts are immediate conequences of the def-
inition.

(1) A productive set is not r.e.

(2) A creative set is not recursive.
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Creative and productive sets arise in logic.

The set of theorems of a logical theory is often creative.
For example, the set of theorems in Peano’s arithmetic is
creative. This yields incompleteness results.

Lemma 7.30. If a set A is productive, then it has an
infinite r.e. subset.

Another important property of productive sets is the fol-
lowing.

Lemma 7.31. If a set A is productive, then K ≤ A.
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Using Lemma 7.31, the following results can be shown.

Lemma 7.32. The following facts hold.

(1) If A is productive and A ≤ B, then B is produc-
tive.

(2) A is creative iff A is equivalent to K.

(3) A is creative iff A is complete,
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