
Chapter 8

The Post Correspondence Problem;
Applications to Undecidability
Results

8.1 The Post Correspondence Problem

The Post correspondence problem (due to Emil Post) is
another undecidable problem that turns out to be a very
helpful tool for proving problems in logic or in formal
language theory to be undecidable.

Let Σ be an alphabet with at least two letters. An in-
stance of the Post Correspondence problem (for short,
PCP) is given by two sequences U = (u1, . . . , um) and
V = (v1, . . . , vm), of strings ui, vi ∈ Σ∗.
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The problem is to find whether there is a (finite) sequence
(i1, . . . , ip), with ij ∈ {1, . . . ,m} for
j = 1, . . . , p, so that

ui1ui2 · · ·uip = vi1vi2 · · · vip.

Equivalently, an instance of the PCP is a sequence of pairs
(
u1
v1

)
, . . . ,

(
um
vm

)
.
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For example, consider the following problem:

(
abab

ababaaa

)
,

(
aaabbb

bb

)
,

(
aab

baab

)
,
(
ba

baa

)
,

(
ab

ba

)
,

(
aa

a

)
.

There is a solution for the string 1234556:

abab aaabbb aab ba ab ab aa

= ababaaa bb baab baa ba ba a.

We are beginning to suspect that this is a hard problem.
Indeed, it is undecidable!

Theorem 8.1. (Emil Post, 1946) The Post corre-
spondence problem is undecidable, provided that the
alphabet Σ has at least two symbols.
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There are several ways of proving Theorem 8.1, but the
strategy is more or less the same: Reduce the halting
problem to the PCP, by encoding sequences of ID’s as
partial solutions of the PCP.

For instance, this can be done for RAM programs. The
first step is to show that every RAM program can be
simulated by a single register RAM program.

Then, the halting problem for RAM programs with one
register is reduced to the PCP (using the fact that only
four kinds of instructions are needed). A proof along these
lines was given by Dana Scott.
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8.2 Some Undecidability Results for CFG’s

Theorem 8.2. It is undecidable whether a context-
free grammar is ambiguous.

Proof. We reduce the PCP to the ambiguity problem for
CFG’s. Given any instance U = (u1, . . . , um) and V =
(v1, . . . , vm) of the PCP, let c1, . . . , cm bem new symbols,
and consider the following languages:

LU = {ui1 · · · uipcip · · · ci1 | 1 ≤ ij ≤ m,

1 ≤ j ≤ p, p ≥ 1},
LV = {vi1 · · · vipcip · · · ci1 | 1 ≤ ij ≤ m,

1 ≤ j ≤ p, p ≥ 1},

and LU,V = LU ∪ LV .
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We can easily construct a CFG, GU,V , generating LU,V .
The productions are:

S −→ SU

S −→ SV

SU −→ uiSUci
SU −→ uici
SV −→ viSV ci
SV −→ vici.

It is easily seen that the PCP for (U, V ) has a solution iff
LU ∩ LV ̸= ∅ iff G is ambiguous.

Remark: As a corollary, we also obtain the following
result: It is undecidable for arbitrary context-free gram-
mars G1 and G2 whether L(G1) ∩ L(G2) = ∅ (see also
Theorem 8.4).



8.2. SOME UNDECIDABILITY RESULTS FOR CFG’S 557

Recall that the computations of a Turing Machine, M ,
can be described in terms of instantaneous descriptions,
upav.

We can encode computations

ID0 ⊢ ID1 ⊢ · · · ⊢ IDn

halting in a proper ID, as the language, LM , consisting
all of strings

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1,

or

w0#wR
1 #w2#wR

3 # · · ·#w2k−2#wR
2k−1#w2k,

where k ≥ 0, w0 is a starting ID, wi ⊢ wi+1 for all i with
0 ≤ i < 2k + 1 and w2k+1 is proper halting ID in the
first case, 0 ≤ i < 2k and w2k is proper halting ID in the
second case.
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The language LM turns out to be the intersection of two
context-free languages L0

M and L1
M defined as follows:

(1) The strings in L0
M are of the form

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1

or

w0#wR
1 #w2#wR

3 # · · ·#w2k−2#wR
2k−1#w2k,

where w2i ⊢ w2i+1 for all i ≥ 0, and w2k is a proper
halting ID in the second case.

(2) The strings in L1
M are of the form

w0#wR
1 #w2#wR

3 # · · ·#w2k#wR
2k+1

or

w0#wR
1 #w2#wR

3 # · · ·#w2k−2#wR
2k−1#w2k,

where w2i+1 ⊢ w2i+2 for all i ≥ 0, w0 is a starting ID,
and w2k+1 is a proper halting ID in the first case.
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Theorem 8.3. Given any Turing machine M , the
languages L0

M and L1
M are context-free, and LM =

L0
M ∩ L1

M .

Proof. We can construct PDA’s accepting L0
M and L1

M .
It is easily checked that LM = L0

M ∩ L1
M .

As a corollary, we obtain the following undecidability re-
sult:

Theorem 8.4. It is undecidable for arbitrary context-
free grammars G1 and G2 whether L(G1)∩L(G2) = ∅.
Proof. We can reduce the problem of deciding whether a
partial recursive function is undefined everywhere to the
above problem. By Rice’s theorem, the first problem is
undecidable.
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However, this problem is equivalent to deciding whether a
Turing machine never halts in a proper ID. By Theorem
8.3, the languages L0

M and L1
M are context-free. Thus,

we can construct context-free grammars G1 and G2 so
that L0

M = L(G1) and L1
M = L(G2). Then, M never

halts in a proper ID iff LM = ∅ iff (by Theorem 8.3),
LM = L(G1) ∩ L(G2) = ∅.

Given a Turing machine M , the language LM is defined
over the alphabet ∆ = Γ ∪Q ∪ {#}. The following fact
is also useful to prove undecidability:

Theorem 8.5. Given any Turing machine M , the
language ∆∗ − LM is context-free.

Proof. One can easily check that the conditions for not
belonging to LM can be checked by a PDA.
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As a corollary, we obtain:

Theorem 8.6. Given any context-free grammar,
G = (V,Σ, P, S), it is undecidable whether L(G) = Σ∗.

Proof. We can reduce the problem of deciding whether a
Turing machine never halts in a proper ID to the above
problem.

Indeed, given M , by Theorem 8.5, the language ∆∗−LM

is context-free. Thus, there is a CFG, G, so that L(G) =
∆∗ − LM . However, M never halts in a proper ID iff
LM = ∅ iff L(G) = ∆∗.

As a consequence, we also obtain the following:
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Theorem 8.7. Given any two context-free grammar,
G1 and G2, and any regular language, R, the following
facts hold:

(1) L(G1) = L(G2) is undecidable.

(2) L(G1) ⊆ L(G2) is undecidable.

(3) L(G1) = R is undecidable.

(4) R ⊆ L(G2) is undecidable.

In contrast to (4), the property L(G1) ⊆ R is decidable!
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8.3 More Undecidable Properties of Languages;
Greibach’s Theorem

We conclude with a nice theorem of S. Greibach, which
is a sort of version of Rice’s theorem for families of lan-
guages.

Let L be a countable family of languages. We assume
that there is a coding function c : L → N and that this
function can be extended to code the regular languages
(all alphabets are subsets of some given countably infinite
set).

We also assume that L is effectively closed under union,
and concatenation with the regular languages.

This means that given any two languages L1 and L2 in
L, we have L1 ∪ L2 ∈ L, and c(L1 ∪ L2) is given by a
recursive function of c(L1) and c(L2), and that for every
regular language R, we have L1R ∈ L, RL1 ∈ L, and
c(RL1) and c(L1R) are recursive functions of c(R) and
c(L1).
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Given any language, L ⊆ Σ∗, and any string, w ∈ Σ∗, we
define L/w by

L/w = {u ∈ Σ∗ | uw ∈ L}.

Theorem 8.8. (Greibach) Let L be a countable family
of languages that is effectively closed under union, and
concatenation with the regular languages, and assume
that the problem L = Σ∗ is undecidable for L ∈ L and
any given sufficiently large alphabet Σ. Let P be any
nontrivial property of languages that is true for the
regular languages, and so that if P (L) holds for any
L ∈ L, then P (L/a) also holds for any letter a. Then,
P is undecidable for L.
Proof. Since P is nontrivial for L, there is some L0 ∈ L
so that P (L0) is false.

Let Σ be large enough, so that L0 ⊆ Σ∗, and the problem
L = Σ∗ is undecidable for L ∈ L.
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We show that given any L ∈ L, with L ⊆ Σ∗, we can
construct a language L1 ∈ L, so that L = Σ∗ iff P (L1)
holds. Thus, the problem L = Σ∗ for L ∈ L reduces to
property P for L, and since for Σ big enough, the first
problem is undecidable, so is the second.

For any L ∈ L, with L ⊆ Σ∗, let

L1 = L0#Σ∗ ∪ Σ∗#L.

Since L is effectively closed under union and concatena-
tion with the regular languages, we have L1 ∈ L.

If L = Σ∗, then L1 = Σ∗#Σ∗, a regular language, and
thus, P (L1) holds, since P holds for the regular lan-
guages.
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Conversely, we would like to prove that if L ̸= Σ∗, then
P (L1) is false.

Since L ̸= Σ∗, there is some w /∈ L. But then,

L1/#w = L0.

Since P is preserved under quotient by a single letter, by
a trivial induction, if P (L1) holds, then P (L0) also holds.
However, P (L0) is false, so P (L1) must be false.

Thus, we proved that L = Σ∗ iff P (L1) holds, as claimed.

Greibach’s theorem can be used to show that it is undecid-
able whether a context-free grammar generates a regular
language.

It can also be used to show that it is undecidable whether
a context-free language is inherently ambiguous.


