
Chapter 9

Computational Complexity;
P and NP

9.1 The Class P

In the previous two chapters, we clarified what it means
for a problem to be decidable or undecidable.

In principle, if a problem is decidable, then there is an
algorithm (i.e., a procedure that halts for every input)
that decides every instance of the problem.

However, from a practical point of view, knowing that
a problem is decidable may be useless, if the number of
steps (time complexity) required by the algorithm is ex-
cessive, for example, exponential in the size of the input,
or worse.

567

568 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

For instance, consider the traveling salesman problem ,
which can be formulated as follows:

We have a set {c1, . . . , cn} of cities, and an n×n matrix
D = (dij) of nonnegative integers, the distance matrix ,
where dij denotes the distance between ci and cj, which
means that dii = 0 and dij = dji for all i ̸= j.

The problem is to find a shortest tour of the cities, that
is, a permutation π of {1, . . . , n} so that the cost

C(π) = dπ(1)π(2) + dπ(2)π(3) + · · · + dπ(n−1)π(n) + dπ(n)π(1)

is as small as possible (minimal).

One way to solve the problem is to consider all possible
tours, i.e., n! permutations.

Actually, since the starting point is irrelevant, we need
only consider (n− 1)! tours, but this still grows very fast.
For example, when n = 40, it turns out that 39! exceeds
1045, a huge number.

9.1. THE CLASS P 569

Consider the 4× 4 symmetric matrix given by

D =

⎛

⎜⎜⎜⎜⎜⎝

0 2 1 1

2 0 1 1

1 1 0 3

1 1 3 0

⎞

⎟⎟⎟⎟⎟⎠
,

and the budget B = 4.

The tour specified by the permutation

π =

(
1 2 3 4

1 4 2 3

)

has cost 4, since

c(π) = dπ(1)π(2) + dπ(2)π(3) + dπ(3)π(4) + dπ(4)π(1)
= d14 + d42 + d23 + d31
= 1 + 1 + 1 + 1 = 4.

The cities in this tour are traversed in the order

(1, 4, 2, 3, 1).

570 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Thus, to capture the essence of practically feasible algo-
rithms, we must limit our computational devices to run
only for a number of steps that is bounded by a polyno-
mial in the length of the input.

We are led to the definition of polynomially bounded com-
putational models.

Definition 9.1. A deterministic Turing machine M is
said to be polynomially bounded if there is a polynomial
p(X) so that the following holds: For every input x ∈ Σ∗,
there is no ID IDn so that

ID0 ⊢ ID1 ⊢∗ IDn−1 ⊢ IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

A language L ⊆ Σ∗ is polynomially decidable if there
is a polynomially bounded Turing machine that accepts
L. The family of all polynomially decidable languages is
denoted by P .

9.1. THE CLASS P 571

Remark: Even though Definition 9.1 is formulated for
Turing machines, it can also be formulated for other mod-
els, such as RAM programs.

The reason is that the conversion of a Turing machine into
a RAM program (and vice versa) produces a program (or
a machine) whose size is polynomial in the original device.

The following lemma, although trivial, is useful:

Lemma 9.1.The class P is closed under complemen-
tation.

Of course, many languages do not belong to P . One way
to obtain such languages is to use a diagonal argument.
But there are also many natural languages that are not
in P , although this may be very hard to prove for some
of these languages.

Let us consider a few more problems in order to get a
better feeling for the family P .

572 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

9.2 Directed Graphs, Paths

Recall that a directed graph, G, is a pair
G = (V,E), where E ⊆ V × V .
Every u ∈ V is called a node (or vertex) and a pair
(u, v) ∈ E is called an edge of G.

We will restrict ourselves to simple graphs , that is, graphs
without edges of the form (u, u); equivalently,G = (V,E)
is a simple graph if whenever (u, v) ∈ E, then u ̸= v.

Given any two nodes u, v ∈ V , a path from u to v is any
sequence of n + 1 edges (n ≥ 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 0, a path from u to v is simply a single edge,
(u, v).)

9.2. DIRECTED GRAPHS, PATHS 573

A graphG is strongly connected if for every pair (u, v) ∈
V × V , there is a path from u to v. A closed path, or
cycle, is a path from some node u to itself.

We will restrict out attention to finite graphs, i.e. graphs
(V,E) where V is a finite set.

Definition 9.2. Given a graph G, an Eulerian cycle
is a cycle in G that passes through all the nodes (possi-
bly more than once) and every edge of G exactly once.
A Hamiltonian cycle is a cycle that passes through all
the nodes exactly once (note, some edges may not be
traversed at all).

Eulerian Cycle Problem : Given a graph G, is there an
Eulerian cycle in G?

Hamiltonian Cycle Problem : Given a graph G, is there
an Hamiltonian cycle in G?

574 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

9.3 Eulerian Cycles

The following graph is a directed graph version of the
Königsberg bridge problem, solved by Euler in 1736.

The nodes A,B,C,D correspond to four areas of land
in Königsberg and the edges to the seven bridges joining
these areas of land.

B

A

C

D

Figure 9.1: A directed graph modeling the Königsberg bridge problem

The problem is to find a closed path that crosses every
bridge exactly once and returns to the starting point.

In fact, the problem is unsolvable, as shown by Euler,
because some nodes do not have the same number of in-
coming and outgoing edges (in the undirected version of
the problem, some nodes do not have an even degree.)

9.3. EULERIAN CYCLES 575

It may come as a surprise that the Eulerian Cycle Prob-
lem does have a polynomial time algorithm, but that so
far, not such algorithm is known for the Hamiltonian Cy-
cle Problem.

The reason why the Eulerian Cycle Problem is decidable
in polynomial time is the following theorem due to Euler:

Theorem 9.2. A graph G = (V,E) has an Eulerian
cycle iff the following properties hold:

(1) The graph G is strongly connected.

(2) Every node has the same number of incoming and
outgoing edges.

Proving that properties (1) and (2) hold if G has an Eu-
lerian cycle is fairly easy. The converse is harder, but not
that bad (try!).

576 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Theorem 9.2 shows that it is necessary to check whether
a graph is strongly connected. This can be done by com-
puting the transitive closure of E, which can be done in
polynomial time (in fact, O(n3)).

Checking property (2) can clearly be done in polynomial
time. Thus, the Eulerian cycle problem is in P .

Unfortunately, no theorem analogous to Theorem 9.2 is
know for Hamiltonian cycles.

9.4. HAMILTONIAN CYCLES 577

9.4 Hamiltonian Cycles

A game invented by Sir William Hamilton in 1859 uses
a regular solid dodecahedron whose twenty vertices are
labeled with the names of famous cities.

The player is challenged to “travel around the world” by
finding a closed cycle along the edges of the dodecahedron
which passes through every city exactly once (this is the
undirected version of the Hamiltonian cycle problem).

578 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

In graphical terms, assuming an orientation of the edges
between cities, the graph D shown in Figure 9.2 is a
plane projection of a regular dodecahedron and we want
to know if there is a Hamiltonian cycle in this directed
graph.

Figure 9.2: A tour “around the world.”

Finding a Hamiltonian cycle in this graph does not appear
to be so easy!

A solution is shown in Figure 9.3 below:

9.4. HAMILTONIAN CYCLES 579

v18
v17

v11
v12 v13

v10
v6 v5

v4
v14

v19
v9

v8

v7 v3

v2

v15

v16

v1

v20

Figure 9.3: A Hamiltonian cycle in D.

A solution!

580 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Remark: We talked about problems being decidable in
polynomial time. Obviously, this is equivalent to deciding
some property of a certain class of objects, for example,
finite graphs.

Our framework requires that we first encode these classes
of objects as strings (or numbers), since P consists of
languages.

Thus, when we say that a property is decidable in poly-
nomial time, we are really talking about the encoding of
this property as a language. Thus, we have to be careful
about these encodings, but it is rare that encodings cause
problems.

9.5. PROPOSITIONAL LOGIC AND SATISFIABILITY 581

9.5 Propositional Logic and Satisfiability

We define the syntax and the semantics of propositions
in conjunctive normal form (CNF).

The syntax has to do with the legal form of propositions
in CNF. Such propositions are interpreted as truth func-
tions, by assigning truth values to their variables.

We begin by defining propositions in CNF. Such proposi-
tions are constructed from a countable set, PV, of propo-
sitional (or boolean) variables , say

PV = {x1, x2, . . . , },

using the connectives ∧ (and), ∨ (or) and ¬ (negation).

582 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

We define a literal (or atomic proposition), L, as L = x
or L = ¬x, also denoted by x, where x ∈ PV.

A clause, C, is a disjunction of pairwise distinct literals,

C = (L1 ∨ L2 ∨ · · · ∨ Lm).

Thus, a clause may also be viewed as a nonempty set

C = {L1, L2, . . . , Lm}.

We also have a special clause, the empty clause, denoted
⊥ or (or {}). It corresponds to the truth value false.

A proposition in CNF, or boolean formula, P , is a
conjunction of pairwise distinct clauses

P = C1 ∧ C2 ∧ · · · ∧ Cn.

9.5. PROPOSITIONAL LOGIC AND SATISFIABILITY 583

Thus, a boolean formula may also be viewed as a nonempty
set

P = {C1, . . . , Cn},

but this time, the comma is interpreted as conjunction.
We also allow the proposition⊥, and sometimes the propo-
sition ⊤ (corresponding to the truth value true).

For example, here is a boolean formula:

P =

{(x1∨x2∨x3), (x1∨x2), (x2∨x3), (x3∨x1), (x1∨x2∨x3)}.

In order to interpret boolean formulae, we use truth as-
signments.

We let BOOL = {F,T}, the set of truth values, where
F stands for false and T stands for true.

584 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

A truth assignment (or valuation), v, is any function
v : PV→ BOOL.

Given a truth assignment, v : PV → BOOL, we define
the truth value, v̂(X), of a literal, clause, and boolean
formula, X , using the following recursive definition:

(1) v̂(⊥) = F, v̂(⊤) = T.

(2) v̂(x) = v(x), if x ∈ PV.

(3) v̂(x) = v(x), if x ∈ PV, where v(x) = F if v(x) = T
and v(x) = T if v(x) = F.

(4) v̂(C) = F if C is a clause and iff v̂(Li) = F for all
literals Li in C, otherwise T.

(5) v̂(P) = T if P is a boolean formula and iff v̂(Cj) = T
for all clauses Cj in P , otherwise F.

9.5. PROPOSITIONAL LOGIC AND SATISFIABILITY 585

Definition 9.3.We say that a truth assignment, v, sat-
isfies a boolean formula, P , if v̂(P) = T. In this case,
we also write

v |= P.

A boolean formula, P , is satisfiable if v |= P for some
truth assignment v, otherwise, it is unsatisfiable. A
boolean formula, P , is valid (or a tautology) if v |= P
for all truth assignments v, in which case we write

|= P.

One should check that the boolean formula

P =

{(x1∨x2∨x3), (x1∨x2), (x2∨x3), (x3∨x1), (x1∨x2∨x3)}

is unsatisfiable.

586 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

One may think that it is easy to test whether a proposi-
tion is satisfiable or not. Try it, it is not that easy!

As a matter of fact, the satisfiability problem , testing
whether a boolean formula is satisfiable, also denoted
SAT, is not known to be in P .

Moreover, it is an NP-complete problem. Most people
believe that the satisfiability problem is not in P , but a
proof still eludes us!

Before we explain what is the class NP , let us remark
that the satisfiability problem for clauses containing at
most two literals (2-satisfiability , or 2-SAT) is solvable
in polynomial time.

9.5. PROPOSITIONAL LOGIC AND SATISFIABILITY 587

The first step consists in observing that if every clause in
P contains at most two literals, then we can reduce the
problem to testing satisfiability when every clause has
exactly two literals.

Indeed, if P contains some clause (x), then any valuation
satisfying P must make x true. Then, all clauses con-
taining x will be true, and we can delete them, whereas
we can delete x from every clause containing it, since x
is false.

Similarly, if P contains some clause (x), then any valua-
tion satisfying P must make x false.

Thus, in a finite number of steps, either we get the empty
clause, and P is unsatisfiable, or we get a set of clauses
with exactly two literals.

588 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

The number of steps is clearly linear in the number of
literals in P .

For the second step, we construct a directed graph from
P . The nodes of this graph are the literals in P , and
edges are defined as follows:

(1) For every clause (x∨ y), there is an edge from x to y
and an edge from y to x.

(2) For every clause (x∨ y), there is an edge from x to y
and an edge from y to x

(3) For every clause (x∨ y), there is an edge from x to y
and an edge from y to x.

Then, it can be shown that P is unsatisfiable iff there is
some x so that there is a cycle containing x and x.

As a consequence, 2-satisfiability is in P .

9.6. THE CLASS NP, NP-COMPLETENESS 589

9.6 The Class NP, Polynomial Reducibility,
NP-Completeness

One will observe that the hard part in trying to solve
either the Hamiltonian cycle problem or the satisfiability
problem, SAT, is to find a solution, but that checking
that a candidate solution is indeed a solution can be done
easily in polynomial time.

This is the essence of problems that can be solved non-
determistically in polynomial time: A solution can be
guessed and then checked in polynomial time.

590 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Definition 9.4. A nondeterministic Turing machine M
is said to be polynomially bounded if there is a polyno-
mial p(X) so that the following holds: For every input
x ∈ Σ∗, there is no ID IDn so that

ID0 ⊢ ID1 ⊢∗ IDn−1 ⊢ IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

A language L ⊆ Σ∗ is nondeterministic polynomially
decidable if there is a polynomially bounded nondeter-
ministic Turing machine that accepts L. The family of
all nondeterministic polynomially decidable languages is
denoted by NP .

9.6. THE CLASS NP, NP-COMPLETENESS 591

Of course, we have the inclusion

P ⊆ NP ,

but whether or not we have equality is one of the most fa-
mous open problems of theoretical computer science and
mathematics.

In fact, the question P ≠ NP is one of the open prob-
lems listed by the CLAY Institute, together with the
Poincaré conjecture and the Riemann hypothesis, among
other problems, and for which one million dollar is of-
fered as a reward!

It is easy to check that SAT is in NP , and so is the
Hamiltonian cycle problem.

592 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

As we saw in recursion theory, where we introduced the
notion of many-one reducibility, in order to compare the
“degree of difficulty” of problems, it is useful to introduce
the notion of reducibility and the notion of a complete
set.

Definition 9.5. A function f : Σ∗ → Σ∗ is polynomial-
time computable if there is a polynomial p(X) so that the
following holds: There is a deterministic Turing machine
M computing it so that for every input x ∈ Σ∗, there is
no ID IDn so that

ID0 ⊢ ID1 ⊢∗ IDn−1 ⊢ IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

Given two languages L1, L2 ⊆ Σ∗, a polynomial reduc-
tion from L1 to L2 is a polynomial-time computable
function f : Σ∗ → Σ∗ so that for all u ∈ Σ∗,

u ∈ L1 iff f(u) ∈ L2.

9.6. THE CLASS NP, NP-COMPLETENESS 593

For example, one can construct a polynomial reduction
from the Hamiltonian cycle problem to SAT.

Remarkably, every language in NP can be reduced to
SAT.

Intuitively, if L1 is a hard problem and L1 can be reduced
to L2, then L2 is also a hard problem.

Thus, SAT is a hardest problem in NP (Since it is in
NP).

Definition 9.6. A language L is NP-hard if there is a
polynomial reduction from every language L1 ∈ NP to
L. A language L is NP-complete if L ∈ NP and L is
NP-hard.

594 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Thus, an NP-hard language is as hard to decide as any
language in NP .

The importance of NP-complete problems stems from
the following theorem:

Theorem 9.3. Let L be an NP-complete language.
Then, P = NP iff L ∈ P.

Next, we prove a famous theorem of Steve Cook and
Leonid Levin (proved independently): SAT isNP-complete.

9.7. THE COOK-LEVIN THEOREM 595

9.7 The Cook–Levin Theorem: SAT is NP-Complete

Instead of showing directly that SAT is NP-complete,
which is rather complicated, we proceed in two steps, as
suggested by Lewis and Papadimitriou.

(1) First, we define a tiling problem adapted from H.
Wang (1961) by Harry Lewis, and we prove that it
is NP-complete.

(2) We show that the tiling problem can be reduced to
SAT.

We are given a finite set T = {t1, . . . , tp} of tile patterns ,
for short, tiles . Copies of these tile patterns may be used
to tile a rectangle of predetermined size 2s× s (s > 1).

However, there are constraints on the way that these tiles
may be adjacent horizontally and vertically.

596 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

The horizontal constraints are given by a relation H ⊆
T × T , and the vertical constraints are given by a rela-
tion V ⊆ T × T .

Thus, a tiling system is a triple T = (T , V,H) with V
and H as above.

The bottom row of the rectangle of tiles is specified before
the tiling process begins.

For example, consider the following tile patterns:

9.7. THE COOK-LEVIN THEOREM 597

a

c ,

a

c

a

, c

a

,

d

e e ,

e

e

b

c d ,

b

c d

b

,

c

d e

c

,

d

e e

d

,

e

e

e

c

d e , c d

b

, d e

c

, e e

d

, e

e

The horizontal and the vertical constraints are that the
letters on adjacent edges match (blank edges do not match).

Let us try to find a 6×3 tiling with the initial row shown
on the next page.

598 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

For s = 3, given the bottom row

a

c

b

c d

c

d e

d

e e

d

e e

e

e

we have the tiling shown below:

c

a

c d

b

d e

c

e e

d

e e

d

e

e

a

c

a

b

c d

b

c

d e

c

d

e e

d

d

e e

d

e

e

e

a

c

b

c d

c

d e

d

e e

d

e e

e

e

9.7. THE COOK-LEVIN THEOREM 599

The problem is then as follows:

The Bounded Tiling Problem

Given any tiling system (T , V,H), any integer s > 1,
and any initial row of tiles σ0 (of length 2s)

σ0 : {1, 2, . . . , s, s + 1, . . . , 2s}→ T ,

find a 2s× s-tiling σ extending σ0, i.e., a function

σ : {1, 2, . . . , s, s + 1, . . . , 2s}× {1, . . . , s}→ T

so that

(1) σ(m, 1) = σ0(m), for all m with 1 ≤ m ≤ 2s.

(2) (σ(m,n),σ(m + 1, n)) ∈ H , for all m with
1 ≤ m ≤ 2s− 1, and all n, with 1 ≤ n ≤ s.

(3) (σ(m,n),σ(m,n + 1)) ∈ V , for all m with
1 ≤ m ≤ 2s, and all n, with 1 ≤ n ≤ s− 1.

600 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Formally, an instance of the tiling problem is a triple,
((T , V,H), ŝ, σ0), where (T , V,H) is a tiling system, ŝ is
the string representation of the number s ≥ 2, in binary
and σ0 is an initial row of tiles (the bottom row).

For example, if s = 1025 (as a decimal number), then its
binary representation is ŝ = 10000000001. The length of
ŝ is log2 s + 1.

Recall that the input must be a string. This is why the
number s is represented by a string in binary.

If we only included a single tile σ0 in position (s + 1, 1),
then the length of the input ((T , V,H), ŝ, σ0) would be
log2 s+ C + 2 for some constant C corresponding to the
length of the string encoding (T , V,H).

9.7. THE COOK-LEVIN THEOREM 601

However, the rectangular grid has size 2s2, which is ex-
ponential in the length log2 s + C + 2 of the input
((T , V,H), ŝ, σ0). Thus, it is impossible to check in poly-
nomial time that a proposed solution is a tiling.

However, if we include in the input the bottom row σ0 of
length 2s, then the size of the grid is indeed polynomial
in the size of the input.

Theorem 9.4. The tiling problem defined earlier is
NP-complete.

Proof. Let L ⊆ Σ∗ be any language in NP and let u be
any string inΣ∗. Assume that L is accepted in polynomial
time bounded by p(|u|).

602 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

We show how to construct an instance of the tiling prob-
lem, ((T , V,H)L, ŝ,σ0), where s = p(|u|) + 2, and where
the bottom row encodes the starting ID, so that u ∈ L
iff the tiling problem ((T , V,H)L, ŝ,σ0) has a solution.

First, note that the problem is indeed in NP , since we
have to guess a rectangle of size 2s2, and that checking
that a tiling is legal can indeed be done in O(s2), where s
is bounded by the the size of the input ((T , V,H), ŝ, σ0),
since the input contains the bottom row of 2s symbols
(this is the reason for including the bottom row of 2s
tiles in the input!).

9.7. THE COOK-LEVIN THEOREM 603

The idea behind the definition of the tiles is that, in a
solution of the tiling problem, the labels on the horizontal
edges between two adjacent rows represent a legal ID,
upav.

In a given row, the labels on vertical edges of adjacent
tiles keep track of the change of state and direction.

Let Γ be the tape alphabet of the TM, M . As before, we
assume that M signals that it accepts u by halting with
the output 1 (true).

From M , we create the following tiles:

(1) For every a ∈ Γ, tiles

a

a

604 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

(2) For every a ∈ Γ, the bottom row uses tiles

a

,

q0, a

where q0 is the start state.

(3) For every instruction (p, a, b, R, q) ∈ δ, for every c ∈
Γ, tiles

b

q, R

p, a

,

q, c

q, R

c

9.7. THE COOK-LEVIN THEOREM 605

(4) For every instruction (p, a, b, L, q) ∈ δ, for every c ∈
Γ, tiles

q, c

q, L

c

,

b

q, L

p, a

(5) For every halting state, p, tiles

p, 1

p, 1

The purpose of tiles of type (5) is to fill the 2s×s rectangle
iff M accepts u. Since s = p(|u|) + 2 and the machine
runs for at most p(|u|) steps, the 2s× s rectangle can be
tiled iff u ∈ L.

The vertical and the horizontal constraints are that adja-
cent edges have the same label (or no label).

606 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

If u = u1 · · · uk, the initial bottom row σ0, of length 2s,
is:

B

· · ·
q0, u1

· · ·
uk

· · ·
B

where the tile labeled q0, u1 is in position s + 1.

The example below illustrates the construction:

B

B

. . .

B

f,R

q, c

f, 1

f, R

1

. . .

B

B

B

B

. . .

q, c

q, L

c

1

q, L

p, a

. . .

B

B

B

B

. . .

c

p, R

r, b

p, a

p,R

a

. . .

B

B

9.7. THE COOK-LEVIN THEOREM 607

It is not hard to check that u = u1 · · · uk is accepted by
M iff the tiling problem just constructed has a solution.
This is because s = p(|u|) + 2 and the machine runs for
at most p(|u|) steps. So the 2s× s rectangle can be tiled
iff tiles of type (5) are used iffM accepts u (prints 1).

Remarks.

(1) The problem becomes harder if we only specify a sin-
gle tile σ0 as input, instead of a row of length 2s. If s is
specified in binary (or any other base, but not in tally
notation), then the 2s2 grid has size exponential in the
length log2 s + C + 2 of the input ((T , V,H), ŝ, σ0),
and this tiling problem is actually NEXP-complete!

(2) If we relax the finiteness condition and require that the
entire upper half-plane be tiled, i.e., for every s > 1,
there is a solution to the 2s × s-tiling problem, then
the problem is undecidable.

In 1972, Richard Karp published a list of 21NP-complete
problems.

We finally prove the Cook-Levin theorem.

608 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Theorem 9.5. (Cook, 1971, Levin, 1973) The satis-
fiability problem SAT is NP-complete.

Proof. We reduce the tiling problem to SAT. Given a
tiling problem, ((T , V,H), ŝ,σ0), we introduce boolean
variables

xmnt,

for all m with 1 ≤ m ≤ 2s, all n with 1 ≤ n ≤ s, and
all tiles t ∈ T .

The intuition is that xmnt = T iff tile t occurs in some
tiling σ so that σ(m,n) = t.

We define the following clauses:

9.7. THE COOK-LEVIN THEOREM 609

(1) For all m,n in the correct range, as above,

(xmnt1 ∨ xmnt2 ∨ · · · ∨ xmntp),

for all p tiles in T .

This clause states that every position in σ is tiled.

(2) For any two distinct tiles t ̸= t′ ∈ T , for all m,n in
the correct range, as above,

(xmnt ∨ xmnt′).

This clause states that a position may not be occupied
by more than one tile.

610 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

(3) For every pair of tiles (t, t′) ∈ T × T −H , for all m
with 1 ≤ m ≤ 2s− 1, and all n, with 1 ≤ n ≤ s,

(xmnt ∨ xm+1nt′).

This clause enforces the horizontal adjacency constraints.

(4) For every pair of tiles (t, t′) ∈ T × T − V , for all m
with 1 ≤ m ≤ 2s, and all n, with 1 ≤ n ≤ s− 1,

(xmnt ∨ xmn+1 t′).

This clause enforces the vertical adjacency constraints.

(5) For all m with 1 ≤ m ≤ 2s,

(xm1σ0(m)).

This clause states that the bottom row is correctly
tiled with σ0.

9.7. THE COOK-LEVIN THEOREM 611

It is easily checked that the tiling problem has a solution
iff the conjunction of the clauses just defined is satisfiable.
Thus, SAT is NP-complete.

We sharpen Theorem 9.5 to prove that 3-SAT is alsoNP-
complete. This is the satisfiability problem for clauses
containing at most three literals.

We know that we can’t go further and retain
NP-completeteness, since 2-SAT is in P .

Theorem 9.6. (Cook, 1971) The satisfiability prob-
lem 3-SAT is NP-complete.

612 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Proof. We have to break “long clauses”

C = (L1 ∨ · · · ∨ Lk),

i.e., clauses containing k ≥ 4 literals, into clauses with
at most three literals, in such a way that satisfiability is
preserved.

For example, consider the following clause with k = 6
literals:

C = (L1 ∨ L2 ∨ L3 ∨ L4 ∨ L5 ∨ L6).

We create 3 new boolean variables y1, y2, y3, and the 4
clauses

(L1 ∨ L2 ∨ y1), (y1 ∨ L3 ∨ y2),

(y2 ∨ L4 ∨ y3), (y3 ∨ L5 ∨ L6).

Let C ′ be the conjunction of these clauses.

9.7. THE COOK-LEVIN THEOREM 613

We claim that C is satisfiable iff C ′ is.

Assume that C ′ is satisfiable but C is not. If so, in any
truth assigment v, v(Li) = F, for i = 1, 2, . . . , 6.

To satisfy the first clause, we must have v(y1) = T.

Then to satisfy the second clause, we must have v(y2) =
T, and similarly satisfy the third clause, we must have
v(y3) = T.

However, since v(L5) = F and v(L6) = F, the only
way to satisfy the fourth clause is to have v(y3) = F,
contradicting that v(y3) = T.

Thus, C is indeed satisfiable.

614 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Let us now assume that C is satisfiable. This means that
there is a smallest index i such that Li is satisfied.

Say i = 1, so v(L1) = T. Then if we let v(y1) = v(y2) =
v(y3) = F, we see that C ′ is satisfied.

Say i = 2, so v(L1) = F and v(L2) = T.

Again if we let v(y1) = v(y2) = v(y3) = F, we see that
C ′ is satisfied.

Say i = 3, so v(L1) = F, v(L2) = F, and v(L3) = T.

If we let v(y1) = T and v(y2) = v(y3) = F, we see that
C ′ is satisfied.

Say i = 4, so v(L1) = F, v(L2) = F, v(L3) = F, and
v(L4) = T.

If we let v(y1) = T, v(y2) = T and v(y3) = F, we see
that C ′ is satisfied.

9.7. THE COOK-LEVIN THEOREM 615

Say i = 5, so v(L1) = F, v(L2) = F, v(L3) = F, v(L4) =
F, and v(L5) = T.

If we let v(y1) = T, v(y2) = T and v(y3) = T, we see
that C ′ is satisfied.

Say i = 6, so v(L1) = F, v(L2) = F, v(L3) = F, v(L4) =
F, v(L5) = F, and v(L6) = T.

Again, if we let v(y1) = T, v(y2) = T and v(y3) = T,
we see that C ′ is satisfied.

Therefore if C is satisfied, then C ′ is satisfied in all cases.

In general, for every long clause (with k ≥ 4), create k−3
new boolean variables y1, . . . yk−3, and the k − 2 clauses

(L1 ∨ L2 ∨ y1), (y1 ∨ L3 ∨ y2), (y2 ∨ L4 ∨ y3), · · · ,
(yk−4 ∨ Lk−2 ∨ yk−3), (yk−3 ∨ Lk−1 ∨ Lk).

Let C ′ be the conjunction of these clauses. We claim that
C is satisfiable iff C ′ is.

616 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Assume that C ′ is satisfiable, but that C is not. Then,
for every truth assignment v, we have v(Li) = F, for
i = 1, . . . , k.

However, C ′ is satisfied by some v, and the only way this
can happen is that v(y1) = T, to satisfy the first clause.
Then, v(y1) = F, and we must have v(y2) = T, to satisfy
the second clause.

By induction, we must have v(yk−3) = T, to satisfy the
next to the last clause. However, the last clause is now
false, a contradiction.

Thus, if C ′ is satisfiable, then so is C.

9.7. THE COOK-LEVIN THEOREM 617

Conversely, assume that C is satisfiable. If so, there is
some truth assignment, v, so that v(C) = T, and thus,
there is a smallest index i, with 1 ≤ i ≤ k, so that
v(Li) = T (and so, v(Lj) = F for all j < i).

Let v′ be the assignment extending v defined so that

v′(yj) = F if max{1, i− 1} ≤ j ≤ k − 3,

and v′(yj) = T, otherwise.

It is easily checked that v′(C ′) = T.

Another version of 3-SAT can be considered, in which
every clause has exactly three literals. We will call this
the problem exact 3-SAT.

618 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Theorem 9.7. (Cook, 1971) The satisfiability prob-
lem for exact 3-SAT is NP-complete.

Proof. A clause of the form (L) is satisfiable iff the fol-
lowing four clauses are satisfiable:

(L ∨ u ∨ v), (L ∨ u ∨ v), (L ∨ u ∨ v), (L ∨ u ∨ v).

A clause of the form (L1∨L2) is satisfiable iff the following
two clauses are satisfiable:

(L1 ∨ L2 ∨ u), (L1 ∨ L2 ∨ u).

Thus, we have a reduction of 3-SAT to exact 3-SAT.

We now make some remarks on the conversion of propo-
sitions to CNF.

9.7. THE COOK-LEVIN THEOREM 619

Recall that the set of propositions (over the connectives
∨, ∧, and ¬) is defined inductively as follows:

(1) Every propositional letter, x ∈ PV, is a proposition
(an atomic proposition).

(2) If A is a proposition, then ¬A is a proposition.

(3) If A and B are propositions, then (A∨B) is a propo-
sition.

(4) If A and B are propositions, then (A∧B) is a propo-
sition.

Two propositions A and B are equivalent , denoted
A ≡ B, if

v |= A iff v |= B

for all truth assignments, v.

620 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

It is easy to show that A ≡ B iff the proposition

(¬A ∨B) ∧ (¬B ∨ A)

is valid.

Every proposition, A, is equivalent to a proposition, A′,
in CNF.

There are several ways of proving this fact. One method
is algebraic, and consists in using the algebraic laws of
boolean algebra.

First, one may convert a proposition to negation normal
form , or nnf . A proposition is in nnf if occurrences of ¬
only appear in front of propositional variables, but not in
front of compound propositions.

9.7. THE COOK-LEVIN THEOREM 621

Any proposition can be converted to an equivalent one in
nnf by using the de Morgan laws:

¬(A ∨B) ≡ (¬A ∧ ¬B)

¬(A ∧B) ≡ (¬A ∨ ¬B)

¬¬A ≡ A.

Then, a proposition in nnf can be converted to CNF, but
the question of uniqueness of the CNF is a bit tricky.

For example, the proposition

A = (u ∧ (x ∨ y)) ∨ (¬u ∧ (x ∨ y))

has

A1 = (u ∨ x ∨ y) ∧ (¬u ∨ x ∨ y)

A2 = (u ∨ ¬u) ∧ (x ∨ y)

A3 = x ∨ y,

as equivalent propositions in CNF!

622 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

We can get a unique CNF equivalent to a given proposi-
tion if we do the following:

(1) Let Var(A) = {x1, . . . , xm} be the set of variables
occurring in A.

(2) Define amaxterm w.r.t. Var(A) as any disjunction of
m pairwise distinct literals formed from Var(A), and
not containing both some variable xi and its negation
¬xi.

(3) Then, it can be shown that for any proposition A
that is not a tautology, there is a unique proposi-
tion in CNF equivalent to A, whose clauses consist
of maxterms formed from Var(A).

The above definition can yield strange results. For in-
stance, the CNF of any unsatisfiable proposition with m
distinct variables is the conjunction of all of its 2m max-
terms!

The above notion does not cope well with minimality.

9.7. THE COOK-LEVIN THEOREM 623

For example, according to the above, the CNF of

A = (u ∧ (x ∨ y)) ∨ (¬u ∧ (x ∨ y))

should be

A1 = (u ∨ x ∨ y) ∧ (¬u ∨ x ∨ y).

There are also propositions such that any equivalent propo-
sition in CNF has size exponential in terms of the original
proposition.

Here is such an example:

A = (x1 ∧ x2) ∨ (x3 ∧ x4) ∨ · · · ∨ (x2n−1 ∧ x2n).

Observe that it is in DNF.

We will prove a little later that any CNF for A contains
2n occurrences of variables.

624 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

A nice method to convert a proposition in nnf to CNF is
to construct a tree whose nodes are labeled with sets of
propositions using the following (Gentzen-style) rules :

P,∆ Q,∆

(P ∧Q),∆
and

P,Q,∆

(P ∨Q),∆

where ∆ stands for any set of propositions (even empty),
and the comma stands for union. Thus, it is assumed
that (P ∧Q) /∈ ∆ in the first case, and that (P ∨Q) /∈ ∆
in the second case.

Since we interpret a set, Γ, of propositions as a disjunc-
tion, a valuation, v, satisfies Γ iff it satisfies some propo-
sition in Γ.

9.7. THE COOK-LEVIN THEOREM 625

Observe that a valuation v satisfies the conclusion of a
rule iff it satisfies both premises in the first case, and the
single premise in the second case.

Using these rules, we can build a finite tree whose leaves
are labeled with sets of literals.

By the above observation, a valuation v satisfies the propo-
sition labeling the root of the tree iff it satisfies all the
propositions labeling the leaves of the tree.

But then, a CNF for the original proposition A (in nnf,
at the root of the tree) is the conjunction of the clauses
appearing as the leaves of the tree.

We may exclude the clauses that are tautologies, and we
may discover in the process that A is a tautology (when
all leaves are tautologies).

626 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

Going back to our “bad” proposition, A, by induction,
we see that any tree for A has 2n leaves.

However, it should be noted that for any proposition,
A, we can construct in polynomial time a formula, A′,
in CNF, so that A is satisfiable iff A′ is satisfiable, by
creating new variables.

We proceed recursively. The trick is that we replace

(C1 ∧ · · · ∧ Cm) ∨ (D1 ∧ · · · ∧Dn)

by

(C1 ∨ y) ∧ · · · ∧ (Cm ∨ y) ∧ (D1 ∨ y) ∧ · · · ∧ (Dn ∨ y),

where the Ci’s and the Dj’s are clauses, and y is a new
variable.

It can be shown that the number of new variables required
is at most quadratic in the size of A.

9.7. THE COOK-LEVIN THEOREM 627

Warning: In general, the proposition A′ is not equivalent
to the proposition A.

Rules for dealing for ¬ can also be created. In this case,
we work with pairs of sets of propositions,

Γ→ ∆,

where, the propositions in Γ are interpreted conjunctively,
and the propositions in ∆ are interpreted disjunctively.

We obtain a sound and complete proof system for proposi-
tional logic (a “Gentzen-style” proof system, see Gallier’s
Logic for Computer Science).

628 CHAPTER 9. COMPUTATIONAL COMPLEXITY; P AND NP

