
Chapter 10

Some NP-Complete Problems

10.1 Statements of the Problems

In this chapter we will show that certain classical algo-
rithmic problems are NP-complete.

This chapter is heavily inspired by Lewis and Papadim-
itriou’s excellent treatment [?].

In order to study the complexity of these problems in
terms of resource (time or space) bounded Turing ma-
chines (or RAM programs), it is crucial to be able to
encode instances of a problem P as strings in a language
LP .
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Then an instance of a problem P is solvable iff the corre-
sponding string belongs to the language LP .

This implies that our problems must have a yes–no an-
swer, which is not always the usual formulation of opti-
mization problems where what is required is to find some
optimal solution, that is, a solution minimizing or maxi-
mizing so objective (cost) function F .

For example the standard formulation of the traveling
salesman problem asks for a tour (of the cities) of minimal
cost.

Fortunately, there is a trick to reformulate an optimiza-
tion problem as a yes–no answer problem, which is to
explicitly incorporate a budget (or cost) term B into the
problem, and instead of asking whether some objective
function F has a minimum or a maximum w, we ask
whether there is a solution w such that F (w) ≤ B in the
case of a minimum solution, or F (w) ≥ B in the case of
a maximum solution.
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We will see several examples of this technique in Problems
5–8 listed below.

The problems that will consider are

(1) Exact Cover

(2) Hamiltonian Cycle for directed graphs

(3) Hamiltonian Cycle for undirected graphs

(4) The Traveling Salesman Problem

(5) Independent Set

(6) Clique

(7) Node Cover

(8) Knapsack, also called subset sum

(9) Inequivalence of ∗-free Regular Expressions
(10) The 0-1-integer programming problem

We begin by describing each of these problems.
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(1) Exact Cover

We are given a finite nonempty set U = {u1, . . . , un}
(the universe), and a family F = {S1, . . . , Sm} of
m ≥ 1 nonempty subsets of U .

The question is whether there is an exact cover , that
is, a subfamily C ⊆ F of subsets in F such that the
sets in C are disjoint and their union is equal to U .

For example, let

U = {u1, u2, u3, u4, u5, u6}, and let F be the family

F = {{u1, u3}, {u2, u3, u6}, {u1, u5}, {u2, u3, u4},
{u5, u6}, {u2, u4}}.

The subfamily

C = {{u1, u3}, {u5, u6}, {u2, u4}}

is an exact cover.
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It is easy to see that Exact Cover is in NP .

To prove that it is NP-complete, we will reduce the
Satisfiability Problem to it.

This means that we provide a method running in poly-
nomial time that converts every instance of the Satis-
fiability Problem to an instance ofExact Cover,
such that the first problem has a solution iff the con-
verted problem has a solution.

(2) Hamiltonian Cycle (for Directed Graphs)

Recall that a directed graph G is a pair G = (V,E),
where E ⊆ V × V .

Elements of V are called nodes (or vertices). A pair
(u, v) ∈ E is called an edge of G.
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We will restrict ourselves to simple graphs , that is,
graphs without edges of the form (u, u);

equivalently, G = (V,E) is a simple graph if whenever
(u, v) ∈ E, then u ̸= v.

Given any two nodes u, v ∈ V , a path from u to v is
any sequence of n + 1 edges (n ≥ 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 0, a path from u to v is simply a single edge,
(u, v).)

A directed graph G is strongly connected if for every
pair (u, v) ∈ V × V , there is a path from u to v. A
closed path, or cycle, is a path from some node u to
itself.

We will restrict out attention to finite graphs, i.e.
graphs (V,E) where V is a finite set.



10.1. STATEMENTS OF THE PROBLEMS 635

Definition 10.1.Given a directed graphG, aHamil-
tonian cycle is a cycle that passes through all the
nodes exactly once (note, some edges may not be tra-
versed at all).

Hamiltonian Cycle Problem (for Directed
Graphs): Given a directed graph G, is there an
Hamiltonian cycle in G?

Is there is a Hamiltonian cycle in the directed graph
D shown in Figure 10.1?

Figure 10.1: A tour “around the world.”
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Finding a Hamiltonian cycle in this graph does not
appear to be so easy! A solution is shown in Figure
10.2 below.
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Figure 10.2: A Hamiltonian cycle in D.

It is easy to see thatHamiltonian Cycle (for Di-
rected Graphs) is in NP .

To prove that it is NP-complete, we will reduce Ex-
act Cover to it.
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This means that we provide a method running in poly-
nomial time that converts every instance of Exact
Cover to an instance of Hamiltonian Cycle (for
Directed Graphs) such that the first problem has
a solution iff the converted problem has a solution.
This is perphaps the hardest reduction.

(3) Hamiltonian Cycle (for Undirected Graphs)

Recall that an undirected graph G is a pair G =
(V,E), where E is a set of subsets {u, v} of V con-
sisting of exactly two distinct elements.

Elements of V are called nodes (or vertices). A pair
{u, v} ∈ E is called an edge of G.

Given any two nodes u, v ∈ V , a path from u to v is
any sequence of n nodes (n ≥ 2)

u = u1, u2, . . . , un = v

such that {ui, ui+1} ∈ E for i = 1, . . . , n − 1. (If
n = 2, a path from u to v is simply a single edge,
{u, v}.)
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An undirected graph G is connected if for every pair
(u, v) ∈ V × V , there is a path from u to v.

A closed path, or cycle, is a path from some node u
to itself.

Definition 10.2. Given an undirected graph G, a
Hamiltonian cycle is a cycle that passes through all
the nodes exactly once (note, some edges may not be
traversed at all).

Hamiltonian Cycle Problem (for Undirected
Graphs): Given an undirected graph G, is there an
Hamiltonian cycle in G?

An instance of this problem is obtained by changing
every directed edge in the directed graph of Figure
10.1 to an undirected edge.
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The directed Hamiltonian cycle given in Figure 10.2
is also an undirected Hamiltonian cycle of the undi-
rected graph of Figure 10.3.

Figure 10.3: A tour “around the world,” undirected version.

We see immediately thatHamiltonian Cycle (for
Undirected Graphs) is in NP .
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To prove that it isNP-complete, we will reduceHamil-
tonian Cycle (for Directed Graphs) to it.

This means that we provide a method running in poly-
nomial time that converts every instance of Hamil-
tonian Cycle (for Directed Graphs) to an in-
stance of Hamiltonian Cycle (for Undirected
Graphs) such that the first problem has a solution
iff the converted problem has a solution. This is an
easy reduction.

(4) Traveling Salesman Problem

We are given a set {c1, c2, . . . , cn} of n ≥ 2 cities, and
an n × n matrix D = (dij) of nonnegative integers,
where dij is the distance (or cost) of traveling from
city ci to city cj.

We assume that dii = 0 and dij = dji for all i, j, so
that the matrixD is symmetric and has zero diagonal.
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Traveling Salesman Problem: Given some n×n
matrix D = (dij) as above and some integer B ≥ 0
(the budget of the traveling salesman), find a permu-
tation π of {1, 2, . . . , n} such that

c(π) = dπ(1)π(2) + dπ(2)π(3) + · · ·
+ dπ(n−1)π(n) + dπ(n)π(1) ≤ B.

The quantity c(π) is the cost of the trip specified by
π.

The Traveling Salesman Problem has been stated in
terms of a budget so that it has a yes or no answer,
which allows us to convert it into a language. A mini-
mal solution corresponds to the smallest feasible value
of B.
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Example 10.1.Consider the 4×4 symmetric matrix
given by

D =

⎛

⎜⎜⎜⎜⎜⎝

0 2 1 1

2 0 1 1

1 1 0 3

1 1 3 0

⎞

⎟⎟⎟⎟⎟⎠
,

and the budget B = 4. The tour specified by the
permutation

π =

(
1 2 3 4

1 4 2 3

)

has cost 4, since

c(π) = dπ(1)π(2) + dπ(2)π(3) + dπ(3)π(4) + dπ(4)π(1)
= d14 + d42 + d23 + d31
= 1 + 1 + 1 + 1 = 4.

The cities in this tour are traversed in the order

(1, 4, 2, 3, 1).



10.1. STATEMENTS OF THE PROBLEMS 643

It is clear that the Traveling Salesman Problem
is in NP .

To show that it isNP-complete, we reduce theHamil-
tonian Cycle Problem (Undirected Graphs)
to it.

This means that we provide a method running in poly-
nomial time that converts every instance of Hamil-
tonian Cycle Problem (Undirected Graphs)
to an instance of the Traveling Salesman Prob-
lem such that the first problem has a solution iff the
converted problem has a solution.

(5) Independent Set

The problem is this: Given an undirected graph G =
(V,E) and an integerK ≥ 2, is there a set C of nodes
with |C| ≥ K such that for all vi, vj ∈ C, there is no
edge {vi, vj} ∈ E?
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A maximal independent set with 3 nodes is shown in
Figure 10.4.

Figure 10.4: A maximal Independent Set in a graph

A maximal solution corresponds to the largest feasible
value of K.

The problem Independent Set is obviously inNP .

To show that it is NP-complete, we reduce
Exact 3-Satisfiability to it.
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This means that we provide a method running in poly-
nomial time that converts every instance of Exact 3-
Satisfiability to an instance of Independent Set
such that the first problem has a solution iff the con-
verted problem has a solution.

(6) Clique

The problem is this: Given an undirected graph G =
(V,E) and an integerK ≥ 2, is there a set C of nodes
with |C| ≥ K such that for all vi, vj ∈ C, there is
some edge {vi, vj} ∈ E?

Equivalently, does G contain a complete subgraph
with at least K nodes?

A maximal clique with 4 nodes is shown in Figure
10.5.
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Figure 10.5: A maximal Clique in a graph

A maximal solution corresponds to the largest feasible
value of K.

The problem Clique is obviously in NP .

To show that it is NP-complete, we reduce Inde-
pendent Set to it.
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This means that we provide a method running in poly-
nomial time that converts every instance of Inde-
pendent Set to an instance ofClique such that the
first problem has a solution iff the converted problem
has a solution.

(7) Node Cover

The problem is this: Given an undirected graph G =
(V,E) and an integer B ≥ 2, is there a set C of
nodes with |C| ≤ B such that C covers all edges
in G, which means that for every edge {vi, vj} ∈ E,
either vi ∈ C or vj ∈ C?

A minimal node cover with 6 nodes is shown in Figure
10.6.

A minimal solution corresponds to the smallest feasi-
ble value of B.
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Figure 10.6: A minimal Node Cover in a graph

The problem Node Cover is obviously in NP .

To show that it is NP-complete, we reduce Inde-
pendent Set to it.

This means that we provide a method running in poly-
nomial time that converts every instance of Inde-
pendent Set to an instance of Node Cover such
that the first problem has a solution iff the converted
problem has a solution.
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The Node Cover problem has the following interesting
interpretation:

think of the nodes of the graph as rooms of a mu-
seum (or art gallery etc.), and each edge as a straight
corridor that joins two rooms.

Then Node Cover may be useful in assigning as few
as possible guards to the rooms, so that all corridors
can be seen by a guard.

(8) Knapsack (also called Subset sum)

The problem is this: Given a finite nonempty set
S = {a1, a2, . . . , an} of nonnegative integers, and
some integerK ≥ 0, all represented in binary, is there
a nonempty subset I ⊆ {1, 2, . . . , n} such that

∑

i∈I
ai = K?
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A “concrete” realization of this problem is that of
a hiker who is trying to fill her/his backpack to its
maximum capacity with items of varying weights or
values.

It is easy to see that the Knapsack Problem is in
NP .

To show that it is NP-complete, we reduce Exact
Cover to it.

This means that we provide a method running in poly-
nomial time that converts every instance of Exact
Cover to an instance of Knapsack Problem such
that the first problem has a solution iff the converted
problem has a solution.
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Remark: The 0 -1 Knapsack Problem is de-
fined as the following problem.

Given a set of n items, numbered from 1 to n, each
with a weight wi ∈ N and a value vi ∈ N, given a
maximum capacity W ∈ N and a budget B ∈ N, is
there a set of n variables x1, . . . , xn with xi ∈ {0, 1}
such that

n∑

i=1

xivi ≥ B,

n∑

i=1

xiwi ≤ W.

Informally, the problem is to pick items to include in
the knapsack so that the sum of the values exceeds a
given minimum B (the goal is to maximize this sum),
and the sum of the weights is less than or equal to the
capacity W of the knapsack.
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A maximal solution corresponds to the largest feasible
value of B.

The Knapsack Problem as we defined it (which is
how Lewis and Papadimitriou define it) is the special
case where vi = wi = 1 for i = 1, . . . , n and W = B.

For this reason, it is also called the Subset Sum
Problem.

Clearly, the Knapsack (Subset Sum) Problem re-
duces to the 0 -1 Knapsack Problem, and thus the
0 -1 Knapsack Problem is also NP-complete.
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(9) Inequivalence of ∗-free Regular Expressions

Recall that the problem of deciding the equivalence
R1
∼= R2 of two regular expressions R1 and R2 is the

problem of deciding whether R1 and R2 define the
same language, that is, L[R1] = L[R2].

Is this problem in NP?

In order to show that the equivalence problem for reg-
ular expressions is in NP we would have to be able
to somehow check in polynomial time that two ex-
pressions define the same language, but this is still an
open problem.

What might be easier is to decide whether two regular
expressions R1 and R2 are inequivalent .
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For this, we just have to find a string w such that
either w ∈ L[R1]− L[R2] or w ∈ L[R2]− L[R1].

The problem is that if we can guess such a string w,
we still have to check in polynomial time that w ∈
(L[R1]− L[R2]) ∪ (L[R2] − L[R1]), and this implies
that there is a bound on the length of w which is
polynomial in the sizes of R1 and R2.

Again, this is an open problem.

To obtain a problem in NP we have to consider a
restricted type of regular expressions, and it turns out
that ∗-free regular expressions are the right candidate.
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A ∗-free regular expression is a regular expression
which is built up from the atomic expressions using
only + and ·, but not ∗. For example,

R = ((a + b)aa(a+ b) + aba(a + b)b)

is such an expression.

It is easy to see that if R is a ∗-free regular expression,
then for every string w ∈ L[R] we have |w| ≤ |R|. In
particular, L[R] is finite.

The above observation shows that if R1 and R2 are
∗-free and if there is a string w ∈ (L[R1]− L[R2]) ∪
(L[R2] − L[R1]), then |w| ≤ |R1| + |R2|, so we can
indeed check this in polynomial time.

It follows that the inequivalence problem for ∗ -free
regular expressions is in NP .
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To show that it is NP-complete, we reduce the Sat-
isfiability Problem to it.

This means that we provide a method running in poly-
nomial time that converts every instance of Satisfia-
bility Problem to an instance of Inequivalence
of Regular Expressions such that the first prob-
lem has a solution iff the converted problem has a
solution.

(10) 0-1 integer programming problem

Let A be any p × q matrix with integer coefficients
and let b ∈ Zp be any vector with integer coefficients.
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The 0-1 integer programming problem is to
find whether a system of p linear equations in q vari-
ables

a11x1 + · · · + a1qxq = b1
... ...

ai1x1 + · · · + aiqxq = bi
... ...

ap1x1 + · · · + apqxq = bp

with aij, bi ∈ Z has any solution x ∈ {0, 1}q, that is,
with xi ∈ {0, 1}.

In matrix form, if we let

A =

⎛

⎜⎜⎝

a11 · · · a1q
... . . . ...

ap1 · · · apq

⎞

⎟⎟⎠ , b =

⎛

⎜⎜⎝

b1
...

bp

⎞

⎟⎟⎠ , x =

⎛

⎜⎜⎝

x1
...

xq

⎞

⎟⎟⎠ ,

then we write the above system as

Ax = b.
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It is immediate that 0-1 integer programming
problem is in NP .

To prove that it is NP-complete we reduce the
bounded tiling problem to it.

This means that we provide a method running in
polynomial time that converts every instance of the
bounded tiling problem to an instance of the 0-
1 integer programming problem such that the
first problem has a solution iff the converted problem
has a solution.
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10.2 Proofs of NP-Completeness

(1) Exact Cover

To prove that Exact Cover is NP-complete, we
reduce the Satisfiability Problem to it:

Satisfiability Problem ≤P Exact Cover

Given a set F = {C1, . . . , Cℓ} of ℓ clauses constructed
from n propositional variables x1, . . . , xn, we must
construct in polynomial time an instance τ (F ) =
(U,F) of Exact Cover such that F is satisfiable
iff τ (F ) has a solution.
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Example 10.2. If

F = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2),

C4 = (x2 ∨ x3)},

then the universe U is given by

U = {x1, x2, x3, C1, C2, C3, C4, p11, p12, p21, p22, p23, p31,

p41, p42},

and the family F consists of the subsets

{p11}, {p12}, {p21}, {p22}, {p23}, {p31}, {p41}, {p42}
T1,F = {x1, p11}
T1,T = {x1, p21}
T2,F = {x2, p22, p31}
T2,T = {x2, p12, p41}
T3,F = {x3, p23}
T3,T = {x3, p42}
{C1, p11}, {C1, p12}, {C2, p21}, {C2, p22}, {C2, p23},
{C3, p31}, {C4, p41}, {C4, p42}.
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It is easy to check that the set C consisting of the
following subsets is an exact cover:

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}.

The general method to construct (U,F) from
F = {C1, . . . , Cℓ} proceeds as follows. Say

Cj = (Lj1 ∨ · · · ∨ Ljmj)

is the jth clause in F , where Ljk denotes the kth
literal in Cj and mj ≥ 1. The universe of τ (F ) is the
set

U = {xi | 1 ≤ i ≤ n} ∪ {Cj | 1 ≤ j ≤ ℓ}
∪ {pjk | 1 ≤ j ≤ ℓ, 1 ≤ k ≤ mj}

where in the third set pjk corresponds to the kth literal
in Cj.
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The following subsets are included in F :

(a) There is a set {pjk} for every pjk.

(b) For every boolean variable xi, the following two
sets are in F :

Ti,T = {xi} ∪ {pjk | Ljk = xi}

which contains xi and all negative occurrences of
xi, and

Ti,F = {xi} ∪ {pjk | Ljk = xi}

which contains xi and all its positive occurrences.
Note carefully that Ti,T involves negative occur-
rences of xi whereas Ti,F involves positive occur-
rences of xi.

(c) For every clause Cj, the mj sets {Cj, pjk} are in
F .
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It remains to prove that F is satisfiable iff τ (F ) has
a solution.

We claim that if v is a truth assignement that satisfies
F , then we can make an exact cover C as follows:

For each xi, we put the subset Ti,T in C iff v(xi) = T,
else we we put the subset Ti,F in C iff v(xi) = F.

Also, for every clauseCj, we put some subset {Cj, pjk}
in C for a literal Ljk which is made true by v.

By construction of Ti,T and Ti,F, this pjk is not in
any set in C selected so far. Since by hypothesis F is
satisfiable, such a literal exists for every clause.

Having covered all xi and Cj, we put a set {pjk} in C
for every remaining pjk which has not yet been covered
by the sets already in C.
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Going back to Example 10.2, the truth assigment
v(x1) = T, v(x2) = T, v(x3) = F satisfies

F = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2),

C4 = (x2 ∨ x3)},

so we put

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}

in C.

Conversely, if C is an exact cover of τ (F ), we define a
truth assigment as follows:

For every xi, if Ti,T is in C, then we set v(xi) = T,
else if Ti,F is in C, then we set v(xi) = F.



10.2. PROOFS OF NP-COMPLETENESS 665

Example 10.3. Given the exact cover

T1,T = {x1, p21}, T2,T = {x2, p12, p41}, T3,F = {x3, p23},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42},

we get the satisfying assigment v(x1) = T, v(x2) =
T, v(x3) = F .

If we now consider the proposition is CNF given by

F2 = {C1 = (x1 ∨ x2), C2 = (x1 ∨ x2 ∨ x3), C3 = (x2),

C4 = (x2 ∨ x3 ∨ x4)}

where we have added the boolean variable x4 to clause
C4, then U also contains x4 and p43 so we need to add
the following subsets to F :

T4,F = {x4, p43}, T4,T = {x4}, {C4, p43}, {p43}.
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The truth assigment v(x1) = T, v(x2) = T, v(x3) =
F, v(x4) = T satisfies F2, so an exact cover C is

T1,T = {x1, p21}, T2,T = {x2, p12, p41},
T3,F = {x3, p23}, T4,T = {x4},
{C1, p11}, {C2, p22}, {C3, p31}, {C4, p42}, {p43}.

Observe that this time, because the truth assignment
v makes both literals corresponding to p42 and p43 true
and since we picked p42 to form the subset {C4, p42},
we need to add the singleton {p43} to C to cover all
elements of U .
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(2) Hamiltonian Cycle (for Directed Graphs)

To prove thatHamiltonian Cycle (for Directed
Graphs) is NP-complete, we will reduce Exact
Cover to it:

Exact Cover ≤P Hamiltonian Cycle (for Di-
rected Graphs)

We need to find an algorithm working in polynomial
time that converts an instance (U,F) ofExact Cover
to a directed graph G = τ (U,F) such that G has a
Hamiltonian cycle iff (U,F) has an exact cover.

The construction of the graph G uses a trick involving
a small subgraph Gad with 7 (distinct) nodes known
as a gadget shown in Figure 10.7.
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a

d

u v w

b

c

Figure 10.7: A gadget Gad

The crucial property of the graph Gad is that if Gad
is a subgraph of a bigger graph G in such a way that
no edge of G is incident to any of the nodes u, v, w
unless it is one of the eight edges of Gad incident to
the nodes u, v, w, then for any Hamiltonian cycle
in G, either the path (a, u), (u, v), (v, w), (w, b) is
traversed or the path (c, w), (w, v), (v, u), (u, d) is
traversed, but not both.

It is convenient to use the simplified notation with a
special type of edge labeled with the exclusive or sign
⊕ between the “edges” between a and b and between
d and c, as shown in Figure 10.8.
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a

d

b

c

⊕

Figure 10.8: A shorthand notation for a gadget

This abbreviating device can be extended to the sit-
uation where we build gadgets between a given pair
(a, b) and several other pairs (c1, d1), . . . , (cm, dm), all
nodes beeing distinct, as illustrated in Figure 10.9.

Either all three edges (c1, d1), (c2, d2), (c3, d3) are tra-
versed or the edge (a, b) is traversed, and these possi-
bilities are mutually exclusive.

a b

d2 c2

d1

c1 d3

c3
⊕

⊕

⊕

Figure 10.9: A shorthand notation for several gadgets
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Example 10.4. The construction of the graph is il-
lustrated in Figure 10.10 for the instance of the exact
cover problem given by

U = {u1, u2, u3, u4}, F = {S1 = {u3, u4},
S2 = {u2, u3, u4}, S3 = {u1, u2}}.

u0

u1

u2

u3

u4 S0

S1

S2

S3

⊕

⊕ ⊕

⊕

⊕

⊕

⊕

Figure 10.10: The directed graph constructed from the data (U,F) of Example 10.4

In our example, there is a Hamiltonian where the blue
edges are traversed between the Si nodes, and the red
edges are traversed between the uj nodes.



10.2. PROOFS OF NP-COMPLETENESS 671

An edge between Si nodes which is not connected by
another ⊕-edge is called a short edge, and otherwise
a long edge.

The Hamiltonian is the following path:

short (S0, S1), long (S1, S2), short (S2, S3), (S3, u0),

(u0, u1)3, (u1, u2)3, (u2, u3)1, (u3, u4)1, (u4, S0).

Each edge between uj−1 and uj corresponds to an
occurrence of uj in some uniquely determined set
Si ∈ F (that is, uj ∈ Si), and we put an exclusive-
or edge between the edge (uj−1, uj) and the the long
edge (Si−1, Si) between Si−1 and Si,

The subsets corresponding to the short (Si−1, Si) edges
are S1 and S3, and indeed C = {S1, S3} is an exact
cover.
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It can be proved that (U,F) has an exact cover iff the
graph G = τ (U,F) has a Hamiltonian cycle.

For example, if C is an exact cover for (U,F), then
consider the path in G obtained by traversing each
short edge (Si−1, Si) for which Si ∈ C, each edge
(uj−1, uj) such that uj ∈ Si, which means that this
edge is connected by a⊕-sign to the long edge (Si−1, Si)
(by construction, for each uj there is a unique such
Si), and the edges (un, S0) and (Sm, u0), then we ob-
tain a Hamiltonian cycle.

In our example, the exact cover C = {S1, S3} yields
the Hamiltonian

short (S0, S1), long (S1, S2), short (S2, S3), (S3, u0),

(u0, u1)3, (u1, u2)3, (u2, u3)1, (u3, u4)1, (u4, S0)

that we encountered earlier.
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(3) Hamiltonian Cycle (for Undirected Graphs)

To show that Hamiltonian Cycle (for Undi-
rected Graphs) isNP-complete we reduceHamil-
tonian Cycle (for Directed Graphs) to it:

Hamiltonian Cycle (for Directed Graphs)
≤P Hamiltonian Cycle (for Undirected
Graphs)

Given any directed graph G = (V,E) we need to con-
struct in polynomial time an undirected graph τ (G) =
G′ = (V ′, E ′) such that G has a (directed) Hamilto-
nian cycle iff G′ has a (undirected) Hamiltonian cycle.

We make three distinct copies v0, v1, v2 of every node
v ∈ V which we put in V ′, and for every edge (u, v) ∈
E we create five edges as illustrated in the diagram
shown in Figure 10.11.

u v u0 u1 u2 v0 v1 v2=⇒

Figure 10.11: Conversion of a directed graph into an undirected graph
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The crucial point about the graph G′ is that although
there may be several edges adjacent to a node u0 or a
node u2, the only way to reach u1 from u0 is through
the edge {u0, u1} and the only way to reach u1 from
u2 is through the edge {u1, u2}.

This implies that any Hamiltonian cycle inG′ arriving
to a node v0 along an edge (u2, v0) must continue to
node v1 and then to v2, which means that the edge
(u, v) is traversed in G.

By considering a Hamiltonian cycle in G′ or perhaps
its reversal, it is not hard to show that a Hamiltonian
cycle in G′ determines a Hamiltonian cycle in G.

Conversely, a Hamiltonian cycle in G determines a
Hamiltonian in G′.
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(4) Traveling Salesman Problem

To show that the Traveling Salesman Problem
is NP-complete, we reduce the Hamiltonian Cy-
cle Problem (Undirected Graphs) to it:

Hamiltonian Cycle Problem (Undirected
Graphs) ≤P Traveling Salesman Problem

Given an undirected graph G = (V, E), we construct
an instance τ (G) = (D,B) of the traveling salesman
problem so that G has a Hamiltonian cycle iff the
traveling salesman problem has a solution.

If we let n = |V |, we have n cities and the matrix
D = (dij) is defined as follows:

dij =

⎧
⎪⎨

⎪⎩

0 if i = j

1 if {vi, vj} ∈ E

2 otherwise.

We also set the budget B as B = n.
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Any tour of the cities has cost equal to n plus the
number of pairs (vi, vj) such that i ̸= j and {vi, vj}
is not an edge of G. It follows that a tour of cost n
exists iff there are no pairs (vi, vj) of the second kind
iff the tour is a Hamiltonian cycle.

(5) Independent Set

To show that Independent Set is NP-complete,
we reduce Exact 3-Satisfiability to it:

Exact 3-Satisfiability ≤P Independent Set

Recall that in Exact 3-Satisfiability every clause
Ci has exactly three literals Li1, Li2, Li3.

Given a set F = {C1, . . . , Cm} ofm ≥ 2 such clauses,
we construct in polynomial time an undirected graph
G = (V,E) such that F is satisfiable iff G has an
independent set C with at least K = m nodes.
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For every i (1 ≤ i ≤ m), we have three nodes ci1, ci2, ci3
corresponding to the three literalsLi1, Li2, Li3 in clause
Ci, so there are 3m nodes in V .

The “core” of G consists of m triangles, one for each
set {ci1, ci2, ci3}. We also have an edge {cik, cjℓ} iff
Lik and Ljℓ are complementary literals.

Example 10.5. Let F be the set of clauses

F = {C1 = (x1 ∨ x2 ∨ x3), C2 = (x1 ∨ x2 ∨ x3),

C3 = (x1 ∨ x2 ∨ x3), C4 = (x1 ∨ x2 ∨ x3)}.

The graph G associated with F is shown in Figure
10.12.

x2 x3

x1

x2 x3

x1

x2 x3

x1

x2 x3

x1

Figure 10.12: The graph constructed from the clauses of Example 10.5
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Since any three nodes in a triangle are connected, an
independent set C can have at most one node per
triangle and thus has at most m nodes. Since the
budget is K = m, we may assume that there is an
independent with m nodes.

Define a (partial) truth assignment by

v(xi) =

{
T if Ljk = xi and cjk ∈ C

F if Ljk = xi and cjk ∈ C.

Since the non-triangle edges in G link nodes corre-
sponding to complementary literals and nodes in C
are not connected, our truth assigment does not as-
sign clashing truth values to the variables xi.

Not all variables may receive a truth value, in which
case we assign an arbitrary truth value to the unas-
signed variables. This yields a satisfying assignment
for F .
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In Example 10.5, the set C = {c11, c22, c32, c41} cor-
responding to the nodes shown in red in Figure 10.12
form an independent set, and they induce the partial
truth assignment v(x1) = T, v(x2) = F.

The variable x3 can be assigned an arbitrary value,
say v(x3) = F, and v is indeed a satisfying truth
assignment for F .

Conversely, if v is a truth assignment for F , then we
obtain an independent set C of size m by picking for
each clause Ci a node cik corresponding to a literal
Lik whose value under v is T.
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(6) Clique

To show thatClique isNP-complete, we reduce In-
dependent Set to it:

Independent Set ≤P Clique

The key the reduction is the notion of the complement
of an undirected graph G = (V,E).

The complement Gc = (V,Ec) of the graph G =
(V,E) is the graph with the same set of nodes V as
G but there is an edge {u, v} (with u ̸= v) in Ec iff
{u, v} /∈ E.

Then, it is not hard to check that there is a bijection
between maximum independent sets in G and maxi-
mum cliques in Gc.
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The reduction consists in constructing from a graph
G its complementGc, and then G has an independent
set iff Gc has a clique.

This construction is illustrated in Figure 10.13, where
a maximum independent set in the graph G is shown
in blue and a maximum clique in the graph Gc is
shown in red.

Figure 10.13: A graph (left) and its complement (right)
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(7) Node Cover

To show that Node Cover is NP-complete, we re-
duce Independent Set to it:

Independent Set ≤P Node Cover

This time the crucial observation is that if N is an
independent set in G, then the complement
C = V −N of N in V is a node cover in G.

Thus there is an independent set of size at least K
iff there is a node cover of size at most n−K where
n = |V | is the number of nodes in V .
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The reduction leaves the graph unchanged and re-
places K by n−K.

An example is shown in Figure 10.14 where an inde-
pendent set is shown in blue and a node cover is shown
in red.

Figure 10.14: An inpendent set (left) and a node cover (right)
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(8) Knapsack (also called Subset sum)

To show thatKnapsack isNP-complete, we reduce
Exact Cover to it:

Exact Cover ≤P Knapsack

Given an instance (U,F) of set cover with
U = {u1, . . . , un} and F = {S1, . . . , Sm}, a family
of subsets of U , we need to produce in polynomial
time an instance τ (U,F) of the knapsack problem
consisting of k nonnegative integers a1, . . . , ak and
another integer K > 0 such that there is a subset
I ⊆ {1, . . . , k} such that

∑
i∈I ai = K iff there is an

exact cover of U using subsets in F .

The trick here is the relationship between set union
and integer addition .
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Example 10.6. Consider the exact cover problem
given by U = {u1, u2, u3, u4} and

F = {S1 = {u3, u4}, S2 = {u2, u3, u4}, S3 = {u1, u2}}.

We can represent each subset Sj by a binary string
aj of length 4, where the ith bit from the left is 1 iff
ui ∈ Sj, and 0 otherwise.

In our example

a1 = 0011

a2 = 0111

a3 = 1100.

Then, the trick is that some family C of subsets Sj is
an exact cover if the sum of the corresponding num-
bers aj adds up to 1111 = 24 − 1 = K.



686 CHAPTER 10. SOME NP-COMPLETE PROBLEMS

For example,

C = {S1 = {u3, u4}, S3 = {u1, u2}}

is an exact cover and

a1 + a3 = 0011 + 1100 = 1111.

Unfortunately, there is a problem with this encoding
which has to do with the fact that addition may in-
volve carry. For example, assuming four subsets and
the universe U = {u1, . . . , u6},

11 + 13 + 15 + 24 = 63,

in binary

001011 + 001101 + 001111 + 011000 = 111111,

but if we convert these binary strings to the corre-
sponding subsets we get the subsets

S1 = {u3, u5, u6}
S2 = {u3, u4, u6}
S3 = {u3, u4, u5, u6}
S4 = {u2, u3},

which are not disjoint and do not cover U .
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The fix is surprisingly simple: use base m (where m
is the number of subsets in F) instead of base 2.

Example 10.7. Consider the exact cover problem
given by U = {u1, u2, u3, u4, u5, u6} and F given by

S1 = {u3, u5, u6}
S2 = {u3, u4, u6}
S3 = {u3, u4, u5, u6}
S4 = {u2, u3},
S5 = {u1, u2, u4}.

In basem = 5, the numbers corresponding to S1, . . . , S5

are

a1 = 001011

a2 = 001101

a3 = 001111

a4 = 011000

a5 = 110100.
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This time,

a1 + a2 + a3 + a4 = 001011 + 001101 + 001111

+ 011000

= 014223 ̸= 111111,

so {S1, S2, S3, S4} is not a solution. However

a1 + a5 = 001011 + 110100 = 111111,

and C = {S1, S5} is an exact cover.

Thus, given an instance (U,F) of Exact Cover
where U = {u1, . . . , un} and F = {S1, . . . , Sm} the
reduction to Knapsack consists in forming the m
numbers a1, . . . , am (each of n bits) encoding the sub-
sets Sj, namely aji = 1 iff ui ∈ Sj, else 0, and to let
K = 1 + m2 + · · · + mn−1, which is represented in
base m by the string 11 · · · 11︸ ︷︷ ︸

n

.

In testing whether
∑

i∈I ai = K for some subset I ⊆
{1, . . . , m}, we use arithmetic in base m.
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If a candidate solution C involves at most m− 1 sub-
sets, then since the corresponding numbers are added
in base m, a carry can never happen.

If the candidate solution involves all m subsets, then
a1 + · · · + am = K iff F is a partition of U , since
otherwise some bit in the result of adding up these m
numbers in base m is not equal to 1, even if a carry
occurs.
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(9) Inequivalence of ∗-free Regular Expressions

To show that Inequivalence of ∗-free Regular
Expressions is NP-complete, we reduce the Sat-
isfiability Problem to it:

Satisfiability Problem≤P Inequivalence of ∗-
free Regular Expressions

We already argued that Inequivalence of ∗-free
Regular Expressions is inNP because ifR is a ∗-
free regular expression, then for every stringw ∈ L[R]
we have |w| ≤ |R|.

We reduce the Satisfiability Problem to the In-
equivalence of ∗-free Regular Expressions as
follows.
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For any set of clauses P = C1 ∧ · · · ∧ Cp, if the
propositional variables occurring in P are x1, . . . , xn,
we produce two ∗-free regular expressions R, S over
Σ = {0, 1}, such that P is satisfiable iff LR ̸= LS.

The expression S is actually

S = (0 + 1)(0 + 1) · · · (0 + 1)︸ ︷︷ ︸
n

.

The expression R is of the form

R = R1 + · · · +Rp,

where Ri is constructed from the clause Ci in such a
way that LRi corresponds precisely to the set of truth
assignments that falsify Ci; see below.
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Given any clause Ci, let Ri be the ∗-free regular ex-
pression defined such that, if xj and xj both belong
to Ci (for some j), then Ri = ∅, else

Ri = R1
i ·R2

i · · ·Rn
i ,

where Rj
i is defined by

Rj
i =

⎧
⎨

⎩

0 if xj is a literal of Ci

1 if xj is a literal of Ci

(0 + 1) if xj does not occur in Ci.
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(10) 0-1 integer programming problem

It is easy to check that the problem is in NP .

To prove that the is NP-complete we reduce the
bounded-tiling problem to it:

bounded-tiling problem ≤P 0-1 integer pro-
gramming problem

Given a tiling problem, ((T , V, H), ŝ, σ0), we create a
0-1-valued variable xmnt, such that xmnt = 1 iff tile t
occurs in position (m,n) in some tiling.

Write equations or inequalities expressing that a tiling
exists and then use “slack variables” to convert in-
equalities to equations.
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For example, to express the fact that every position
is tiled by a single tile, use the equation

∑

t∈T
xmnt = 1,

for all m,n with 1 ≤ m ≤ 2s and 1 ≤ n ≤ s. We
leave the rest as as exercise.
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10.3 Succinct Certificates, coNP, and EXP

All the problems considered in Section 10.1 share a com-
mon feature, which is that for each problem, a solution
is produced nondeterministically (an exact cover, a di-
rected Hamiltonian cycle, a tour of cities, an independent
set, a node cover, a clique etc.), and then this candidate
solution is checked deterministically and in polyno-
mial time. The candidate solution is a string called a
certificate (or witness).

It turns out that membership on NP can be defined in
terms of certificates.

To be a certificate, a string must satisfy two conditions:

1. It must be polynomially succinct , which means that
its length is at most a polynomial in the length of the
input.

2. It must be checkable in polynomial time.
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All “yes” inputs to a problem in NP must have at least
one certificate, while all “no” inputs must have none.

The notion of certificate can be formalized using the no-
tion of a polynomially balanced language.

Definition 10.3. Let Σ be an alphabet, and let “;” be
a symbol not in Σ. A language L′ ⊆ Σ∗;Σ∗ is said to be
polynomially balanced if there exists a polynomial p(X)
such that for all x, y ∈ Σ∗, if x; y ∈ L′ then |y| ≤ p(|x|).

Suppose L′ is a polynomially balanced language and that
L′ ∈ P . Then we can consider the language

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.

The intuition is that for each x ∈ L, the set

{y ∈ Σ∗ | x; y ∈ L′}

is the set of certificates of x.
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For every x ∈ L, a Turing machine can nondetermin-
istically guess one of its certificates y, and then use the
deterministic Turing machine for L′ to check in polyno-
mial time that x; y ∈ L′. It follows that L ∈ NP .

Conversely, if L ∈ NP and the alphabet Σ has at least
two symbols, we can encode the paths in the computation
tree for every input x ∈ L, and we obtain a polynomially
balanced language L′ ⊆ Σ∗;Σ∗ in P such that

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.

In summary, we obtain the following theorem.

Theorem 10.1. Let L ⊆ Σ∗ be a language over an
alphabet Σ with at least two symbols, and let “;” be a
symbol not in Σ. Then L ∈ NP iff there is a polyno-
mially balanced language L′ ⊆ Σ∗;Σ∗ such that L′ ∈ P
and

L = {x ∈ Σ∗ | (∃y ∈ Σ∗)(x; y ∈ L′)}.
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A striking illustration of the notion of succint certificate
is illustrated by the set of composite integers, namely
those natural numbers n ∈ N that can be written as the
product pq of two numbers p, q ≥ 2 with p, q ∈ N.

For example, the number

4, 294, 967, 297

is a composite!

This is far from obvious, but if an oracle gives us the
certificate {6, 700, 417, 641}, it is easy to carry out in
polynomial time the multiplication of these two numbers
and check that it is equal to 4, 294, 967, 297.

Finding a certificate is usually (very) hard, but checking
that it works is easy. This is the point of certificates.
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We conclude this section with a brief discussion of the
complexity classes coNP and EXP .

By definition,

coNP = {L | L ∈ NP},

that is, coNP consists of all complements of languages
in NP .

Since P ⊆ NP and P is closed under complementation,

P ⊆ coNP ,

but nobody knows whether NP is closed under comple-
mentation, that is, nobody knows whetherNP = coNP .

What can be shown is that if NP ≠ coNP then
P ≠ NP .
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A natural instance of a problem in coNP is the unsatis-
fiability problem for propositions, namely deciding that
a proposition P has no satisying assignmnent.

Since a proposition P is valid iff ¬P is unsatisfiable, the
validity problem for propositions is in coNP .

Despite the fact that this problem has been extensively
studied, not much is known about its exact complexity.

The class EXP is defined as follows.

Definition 10.4. A deterministic Turing machine M is
said to be exponentially bounded if there is a polynomial
p(X) such that for every input x ∈ Σ∗, there is no ID
IDn such that

ID0 ⊢ ID1 ⊢∗ IDn−1 ⊢ IDn, with n > 2p(|x|).

The class EXP is the class of all languages that are ac-
cepted by some exponentially bounded deterministic Tur-
ing machine.
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Remark: We can also define the classNEXP as in Def-
inition 10.4, except that we allow nondeterministic Turing
machines.

One of the interesting features of EXP is that it contains
NP .

Theorem 10.2.We have the inclusion NP ⊆ EXP.

It is also immediate to see that EXP is closed under
complementation. Furthermore the strict inclusion P ⊂
EXP holds.

Theorem 10.3.We have the strict inclusion
P ⊂ EXP.

The proof involves a diagonalization argument to produce
a language E such that E /∈ P , yet E ∈ EXP .
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In summary, we have the chain of inclusions

P ⊆ NP ⊆ EXP ,

where the left inclusion and the right inclusion are both
open problems, but we know that at least one of these
two inclusions is strict.


